Matching Items (11)
Filtering by

Clear all filters

152900-Thumbnail Image.png
Description
Spatiotemporal processing in the mammalian olfactory bulb (OB), and its analog, the invertebrate antennal lobe (AL), is subject to plasticity driven by biogenic amines. I study plasticity using honey bees, which have been extensively studied with respect to nonassociative and associative based olfactory learning and memory. Octopamine (OA) release in

Spatiotemporal processing in the mammalian olfactory bulb (OB), and its analog, the invertebrate antennal lobe (AL), is subject to plasticity driven by biogenic amines. I study plasticity using honey bees, which have been extensively studied with respect to nonassociative and associative based olfactory learning and memory. Octopamine (OA) release in the AL is the functional analog to epinephrine in the OB. Blockade of OA receptors in the AL blocks plasticity induced changes in behavior. I have now begun to test specific hypotheses related to how this biogenic amine might be involved in plasticity in neural circuits within the AL. OA acts via different receptor subtypes, AmOA1, which gates calcium release from intracellular stores, and AmOA-beta, which results in an increase of cAMP. Calcium also enters AL interneurons via nicotinic acetylcholine receptors, which are driven by acetylcholine release from sensory neuron terminals, as well as through voltage-gated calcium channels. I employ 2-photon excitation (2PE) microscopy using fluorescent calcium indicators to investigate potential sources of plasticity as revealed by calcium fluctuations in AL projection neuron (PN) dendrites in vivo. PNs are analogous to mitral cells in the OB and have dendritic processes that show calcium increases in response to odor stimulation. These calcium signals frequently change after association of odor with appetitive reinforcement. However, it is unclear whether the reported plasticity in calcium signals are due to changes intrinsic to the PNs or to changes in other neural components of the network. My studies were aimed toward understanding the role of OA for establishing associative plasticity in the AL network. Accordingly, I developed a treatment that isolates intact, functioning PNs in vivo. A second study revealed that cAMP is a likely component of plasticity in the AL, thus implicating the AmOA-beta; receptors. Finally, I developed a method for loading calcium indicators into neural components of the AL that have yet to be studied in detail. These manipulations are now revealing the molecular mechanisms contributing to associative plasticity in the AL. These studies will allow for a greater understanding of plasticity in several neural components of the honey bee AL and mammalian OB.
ContributorsProtas, Danielle (Author) / Smith, Brian H. (Thesis advisor) / Neisewander, Janet (Committee member) / Anderson, Trent (Committee member) / Tyler, William (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2014
156075-Thumbnail Image.png
Description
Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, and the associated neural biogenic amine signaling pathways. I use the eusocial honey bee (Apis mellifera) system, one in which individuals exhibit a high degree of plasticity in responses to environmental stimuli and there is a richness of communicatory pathways for food-related information. Foraging exposes honey bees to aversive experiences such as predation, con-specific competition, and environmental toxins. I show that foraging experience changes individuals' response thresholds to sucrose, a main component of adults’ diets, depending on whether foraging conditions are benign or aversive. Bodily injury is demonstrated to reduce individuals' appetitive responses to new, potentially food-predictive odors. Aversive conditions also impact an individual's social food sharing behavior; mouth-to-mouse trophallaxis with particular groupmates is modulated by aversive foraging conditions both for foragers who directly experienced these conditions and non-foragers who were influenced via social contact with foragers. Although the mechanisms underlying these behavioral changes have yet to be resolved, my results implicate biogenic amine signaling pathways as a potential component. Serotonin and octopamine concentrations are shown to undergo long-term change due to distinct foraging experiences. My work serves to highlight the malleability of a social individual's food-related behavior, suggesting that environmental conditions shape how individuals respond to food and share information with group-mates. This thesis contributes to a deeper understanding of inter-individual variation in animal behavior.
ContributorsFinkelstein, Abigail (Author) / Amdam, Gro V (Thesis advisor) / Conrad, Cheryl (Committee member) / Smith, Brian (Committee member) / Neisewander, Janet (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2017
Description
Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in cocaine-self administration in male rats during maintenance. However, these studies do not take into consideration sex differences between male rats

Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in cocaine-self administration in male rats during maintenance. However, these studies do not take into consideration sex differences between male rats and female rats. Female rats introduce a new complexity because they constantly undergo an estrous cycle that consists of four phases, metestrus, diestrus, proestrus, and estrus. It was hypothesized that cocaine infusions and active lever response rates would greatly decrease during proestrus and estrus in comparison to metestrus and diestrus due to hormonal level differences of LH, FSH, progesterone, and estradiol. In this study, female rats were trained to self-administer a training dose of 0.75 mg/kg/infusion on a fixed progressive ratio (FR5). Rats were then pretreated with CP94253 to test the effects of this 5HT1B agonist on female rat cocaine self-administration during the estrous cycle. Results showed there was no three-way interaction between cycle phase, pretreatment, and cocaine dose on infusions or active lever responses. However, pretreatment with CP94253 decreased cocaine intake and active lever responses at high cocaine doses, regardless of cycle phase. Lastly, there was a two-way interaction between pretreatment and cycle phase in which active lever responses decreased during diestrus and proestrus. These results imply that CP94253 enhances cocaine's effect regardless of cycle phase. Future work can work with ovariectomized (OVX) female rats to observe cocaine self-administration during controlled cycle phases.
ContributorsNguyen, Toan Thai Tran (Author) / Neisewander, Janet (Thesis director) / Gipson-Reichardt, Cassandra (Committee member) / Scott, Samantha (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
ContributorsLynn, Jeffrey Spencer (Author) / Neisewander, Janet (Thesis director) / Orchinik, Miles (Committee member) / Bastle, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134455-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found

MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found miR-495 is downregulated in the NAc following acute cocaine administration, and cocaine motivation measured by breakpoint on a progressive ratio schedule of cocaine reinforcement is decreased when miR-495 is overexpressed. In this study, we manipulated the endogenous levels of miR-495 by using a viral vector. Using an animal model, rats were first trained for self-administration on a fixed ratio (FR) schedule of reinforcement. After they were infused with a lentivirus to overexpress (LV-miR-495) or decrease (LV-Sponge) miR-495, in the NAc shell. The rats were then tested for extinction and reinstatement of cocaine-seeking behavior, which are measures of motivation for cocaine. We measured the relative levels of miR-495 in the NAc shell using qRT-PCR. Our results show that overexpression of miR-495 decreased cocaine-seeking behavior during extinction and cocaine reinstatement, as we hypothesized. Surprisingly, miR-495 LV-sponge also decreased cocaine-seeking behavior in extinction, not as we hypothesized. However, we found that LV-Sponge failed to significantly decrease levels of miR-495 as intended. In conclusion, understanding why LV-Sponge decreased, rather than increased, miR-495 will need further study, however, the results with LV-miR-495 extend previous findings that miR-495 plays a vital role in the molecular mechanism that influences motivation to seek cocaine.
ContributorsChaudhury, Trisha (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Powell, Gregory (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133302-Thumbnail Image.png
Description
The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one of the least rigorously studied. However, the 5-HT7R has been shown to play a role in multiple psychiatric conditions, including

The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one of the least rigorously studied. However, the 5-HT7R has been shown to play a role in multiple psychiatric conditions, including depression, anxiety, and alcoholism. This is not surprising, as the 5-HT7R is expressed in brain regions associated with emotion and reward, such as the amygdala, dorsal raphe nucleus, and striatum. MC-RG19 is a novel 5-HT7R antagonist which has >114-fold selectivity for the 5-HT7 over other serotonin receptors. This compound was developed by our collaborators at the Temple University School of Pharmacy. Due to this specificity, and the implications of the 5-HT7 in behavior, we hypothesized that MC-RG19 would have an effect on addiction-related behaviors. We investigated the effects of MC-RG19 on spontaneous locomotion, cue-induced reinstatement, and cocaine/sucrose multiple schedule self-administration. We observed a dose-dependent decrease in spontaneous locomotor activity with significance at a MC-RG19 dose of 10 mg/kg. A dose of 5.6 mg/kg, which did not significantly decrease locomotion, significantly reduces cocaine-seeking behavior (active lever pressing) in response to the reintroduction of drug-paired cues after a period of extinction. No dose (3, 5.6, or 10 mg/kg) produced a significant effect on a multiple schedule of self-administration with alternating availability of sucrose and cocaine as the reinforcer. These results indicate that MC-RG19 has an effect on the incentive \u2014 motivational properties of reward-paired cues.
ContributorsCarlson, Andrew Kenneth (Author) / Neisewander, Janet (Thesis director) / Gipson-Reichardt, Cassandra (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134330-Thumbnail Image.png
Description
Abstract Cocaine is highly addictive because it exacerbates the action responsible for creating the feeling of "reward," which is controlled by the neurotransmitter dopamine. Dopamine receptors can be divided into five subtypes: D1, D2, D3, D4, and D5. The localization of D3 receptors is restricted to the mesolimbic pathway, which

Abstract Cocaine is highly addictive because it exacerbates the action responsible for creating the feeling of "reward," which is controlled by the neurotransmitter dopamine. Dopamine receptors can be divided into five subtypes: D1, D2, D3, D4, and D5. The localization of D3 receptors is restricted to the mesolimbic pathway, which is often called the "reward pathway." This pathway is associated with emotions, motivation, and behavior. There is evidence that these receptors are upregulated in response to the repeated use of psychostimulants, such as cocaine, making these receptors a potential target for pharmaceutical therapeutics for drug addiction. In the present study, two compounds selective for D3 receptors, MC-250041 and LS-3-134, were examined for their effects on spontaneous and cocaine-primed locomotor activity. The present study also aimed to examine the effects of MC-250041 and LS-3-134 on the number of lever presses and infusions under a progressive ratio (PR) schedule when subjects are trained to self-administer cocaine within an operant conditioning chamber. Based on the present research on D3 receptor compounds and D3Rs, I hypothesized that pretreatment with MC-250041 or LS-3-134 decreases cocaine self-administration under a progressive ratio (PR) schedule of cocaine reinforcement at doses that would have no effect on locomotor activity. The results showed no significant effects on spontaneous or cocaine-primed locomotor activity following an injection of MC-250041 (1, 3, 5.6 mg/kg IP). Similarly, there was no change in the amount of lever presses or drug infusions within an operant conditioning chamber at any of the examined doses of MC-250041 (3, 5.6, 10 mg/kg IP) during self-administration. LS-3-134 decreased cocaine-primed locomotor activity, as well as lever presses and infusions during self-administration at the 5.6 mg/kg dose; however, there was no effect on spontaneous locomotor activity at any of the examined doses (1, 3.2, 5.6 mg/kg IP). In conclusion, the results of the study suggest that LS-3-134 effectively reduced motivation for cocaine at the 5.6 mg/kg dose; whereas, MC-250041 was unsuccessful at warranting any significant effect on motivation for cocaine at any of the examined doses.
ContributorsMendoza, Rachel Ann (Author) / Neisewander, Janet (Thesis director) / Olive, Foster (Committee member) / Powell, Greg (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
155638-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been

Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. The Smith lab has been able to show a correlation between learning and the AmTYR1 receptor gene through pharmacological inhibition of the receptor. In order to further confirm this finding, experiments were designed to test how honey bees learn with this receptor knocked out. Here this G-protein coupled receptor for the biogenic amine tyramine is implemented as an important factor underlying latent inhibition in honey bees. It is shown that double-stranded RNA (dsRNA) and Dicer-substrate small interfering RNA (dsiRNA) that are targeted to disrupt the tyramine receptors specifically affects latent inhibition but not excitatory associative conditioning. The results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian H. (Thesis advisor) / Wang, Ying (Committee member) / Neisewander, Janet (Committee member) / Sinakavich, Irina (Committee member) / Arizona State University (Publisher)
Created2017
156920-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.
ContributorsDer-Ghazarian, Taleen (Author) / Neisewander, Janet (Thesis advisor) / Olive, Foster (Committee member) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Arizona State University (Publisher)
Created2018
131862-Thumbnail Image.png
Description
Cocaine use remains a prevalent problem, yet there are no effective pharmacological treatments against cocaine use disorders. Cocaine is known to affect serotonin neurotransmission in the brain. Previous data has shown the modulatory role of CP 94,253, a serotonin 1B receptor (5-HT1BR) agonist on cocaine self-administration at different periods of

Cocaine use remains a prevalent problem, yet there are no effective pharmacological treatments against cocaine use disorders. Cocaine is known to affect serotonin neurotransmission in the brain. Previous data has shown the modulatory role of CP 94,253, a serotonin 1B receptor (5-HT1BR) agonist on cocaine self-administration at different periods of the use-abstinence-relapse cycle. CP 94,253 facilitates cocaine self-administration in rats during the use maintenance phase, where rats are receiving daily intake of cocaine, yet attenuates it after a period of abstinence, when drug delivery is discontinued and rats are placed in home cages. Here we study the therapeutic potential of 5-HT1BR agonist pre-treatment on cocaine self-administration during these different time periods. Male and free-cycling female rats were trained to lever-press for cocaine (0.75 mg/kg i.v.) or sucrose pellets, until they met stable performance for total number of infusions on a fixed ratio 5 schedule of reinforcement. Rats were then tested with either the FDA-approved but less selective 5-HT1BR agonist zolmitriptan (3, 5.6, and 10 mg/kg s.c.; in descending order) prior to a period of abstinence or the more selective 5-HT1BR agonist CP 94,253 (5.6 mg/kg s.c.) after a period of prolonged abstinence and relapse (i.e. resumption of daily cocaine self-administration after a period of abstinence). Each session ran for 2 hours during which the training dose was available for the 1st hour and a low dose of cocaine (0.075 mg/kg i.v.) for the 2nd hour. Zolmitriptan was found to attenuate cocaine self-administration measures at a dose of 3 and 5.6 mg/kg when testing at the low dose of cocaine and at all three doses (3, 5.6, and 10 mg/kg) when testing at the training dose of cocaine. Zolmitriptan at the doses effective at attenuating cocaine intake did not alter sucrose self-administration. CP 94,253 (5.6 mg/kg s.c.) was found to have significant attenuative effects on self-administration measures both after a period of prolonged abstinence and after a period of relapse. Overall, these experiments showed that zolmitriptan decreased cocaine reinforcement without altering sucrose reinforcement as well as that CP 94,253 attenuates cocaine intake even after a period of relapse. These findings support the therapeutic potential of 5-HT1BR agonists as pharmacological treatments for cocaine use disorders.
ContributorsLe, Tien (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Garcia, Raul (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05