Matching Items (401)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
151964-Thumbnail Image.png
Description
5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses

5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses that 5-HT2ARs in the medial (m) PFC mediate the incentive motivational effects of cocaine and cocaine-paired cues; 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and functional neuronal activation (i.e, Fos protein); and 5-HT2CRs in the BlA mediate the incentive motivational effects of cocaine-paired cues and anxiety-like behavior, while 5-HT2CRs in the CeA mediate the incentive motivational effects of cocaine. In chapter 2, we infused M100907, a selective 5-HT2AR antagonist, directly into the mPFC and examined its effects on reinstatement of cocaine-seeking behavior. We found that M100907 in the mPFC dose- dependently attenuated cue-primed reinstatement, without affecting cocaine-primed reinstatement, cue-primed reinstatement of sucrose-seeking behavior, or locomotor activity. In chapter 3, we used subthreshold doses of M100907 and MK212, a 5-HT2CR agonist, to investigate whether these compounds interact to attenuate cocaine hyperlocomotion and Fos protein expression. Only the drug combination attenuated cocaine hyperlocomotion and cocaine-induced Fos expression in the CPu, but had no effect on spontaneous locomotion. Finally, in chapter 4 we investigated the effects of a 5- HT2CR agonist in the BlA and CeA on cocaine-seeking behavior and anxiety-like behavior. We found that CP809101, a selective 5-HT2CR agonist, infused into the BlA increased anxiety-like behavior on the elevated plus maze (EPM), but failed to alter cocaine-seeking behavior. CP809101 infused into the CeA attenuated cocaine-primed reinstatement and this effect was blocked by co-administration of a 5-HT2CR antagonist. Together, these results suggest that 5-HT2ARs in the mPFC are involved in cue-primed reinstatement, 5-HT2A and 5-HT2CRs may interact in the nigrostriatal pathway to attenuate cocaine hyperlocomotion and Fos expression, and 5-HT2CRs are involved in anxiety-like behavior in the BlA and cocaine-primed reinstatement in the CeA. Our findings add to the literature on the localization of 5-HT2AR antagonist and 5-HT2CR agonist effects, and suggest a potential treatment mechanism via concurrent 5-HT2AR antagonism and 5-HT2CR agonism.
ContributorsPockros, Lara Ann (Author) / Neisewander, Janet L (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
150589-Thumbnail Image.png
Description
The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to examine brain activation in response to cocaine cues in this model apart from activation produced by test novelty

The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to examine brain activation in response to cocaine cues in this model apart from activation produced by test novelty using a novel cue control. Rats trained to self-administer cocaine paired with either an oscillating light or tone cue underwent daily extinction training and were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either their assigned cocaine-paired cue or the alternate, novel cue. Additional controls received saline infusions and cue presentations yoked to a cocaine-trained rat. Brains were harvested for Fos immunohistochemistry immediately after the 90-min reinstatement test. Surprisingly, conditioned and novel cues both reinstated responding to a similar degree; however magnitude of reinstatement did vary by cue modality with the greatest reinstatement to the light cues. In most brain regions, Fos expression was enhanced in rats with a history of cocaine training regardless of cue type with the exception of the Cg1 region of the anterior cingulate cortex, which was sensitive to test cue modality. Also Fos expression within the dorsomedial caudate-putamen was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel light and tone, but not a familiar cue. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a history of operant-delivered drug or a natural reinforcer. Furthermore, similar brain circuits as those involved in cocaine-seeking behavior are activated by novel cues, suggesting converging processes exist to drive conditioned and novel reinforcement seeking.
ContributorsBastle, Ryan (Author) / Neisewander, Janet L (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Arizona State University (Publisher)
Created2012
150809-Thumbnail Image.png
Description
Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to

Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to generate and explore hypotheses. This work develops a model of DA dynamics in a representative, single DA neuron by integrating previous experimental, theoretical and computational research. The model consists of three compartments: the cytosol, the vesicles, and the extracellular space and forms the basis of a new mathematical paradigm for examining the dynamics of DA synthesis, storage, release and reuptake. The model can be driven by action potentials generated by any model of excitable membrane potential or even from experimentally induced depolarization voltage recordings. Here the model is forced by a previously published model of the excitable membrane of a mesencephalic DA neuron in order to study the biochemical processes involved in extracellular DA production. After demonstrating that the model exhibits realistic dynamics resembling those observed experimentally, the model is used to examine the functional changes in presynaptic mechanisms due to application of cocaine. Sensitivity analysis and numerical studies that focus on various possible mechanisms for the inhibition of DAT by cocaine provide insight for the complex interactions involved in DA dynamics. In particular, comparing numerical results for a mixed inhibition mechanism to those for competitive, non-competitive and uncompetitive inhibition mechanisms reveals many behavioral similarities for these different types of inhibition that depend on inhibition parameters and levels of cocaine. Placing experimental results within this context of mixed inhibition provides a possible explanation for the conflicting views of uptake inhibition mechanisms found in experimental neuroscience literature.
ContributorsTello-Bravo, David (Author) / Crook, Sharon M (Thesis advisor) / Greenwood, Priscilla E (Thesis advisor) / Baer, Steven M. (Committee member) / Castaneda, Edward (Committee member) / Castillo-Chavez, Carlos (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
Description
Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in cocaine-self administration in male rats during maintenance. However, these studies do not take into consideration sex differences between male rats

Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in cocaine-self administration in male rats during maintenance. However, these studies do not take into consideration sex differences between male rats and female rats. Female rats introduce a new complexity because they constantly undergo an estrous cycle that consists of four phases, metestrus, diestrus, proestrus, and estrus. It was hypothesized that cocaine infusions and active lever response rates would greatly decrease during proestrus and estrus in comparison to metestrus and diestrus due to hormonal level differences of LH, FSH, progesterone, and estradiol. In this study, female rats were trained to self-administer a training dose of 0.75 mg/kg/infusion on a fixed progressive ratio (FR5). Rats were then pretreated with CP94253 to test the effects of this 5HT1B agonist on female rat cocaine self-administration during the estrous cycle. Results showed there was no three-way interaction between cycle phase, pretreatment, and cocaine dose on infusions or active lever responses. However, pretreatment with CP94253 decreased cocaine intake and active lever responses at high cocaine doses, regardless of cycle phase. Lastly, there was a two-way interaction between pretreatment and cycle phase in which active lever responses decreased during diestrus and proestrus. These results imply that CP94253 enhances cocaine's effect regardless of cycle phase. Future work can work with ovariectomized (OVX) female rats to observe cocaine self-administration during controlled cycle phases.
ContributorsNguyen, Toan Thai Tran (Author) / Neisewander, Janet (Thesis director) / Gipson-Reichardt, Cassandra (Committee member) / Scott, Samantha (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136049-Thumbnail Image.png
Description
Abstract Kicking the Habit: Reforming Mandatory Minimums for Drug Crimes Ashley Allen While mandatory minimum sentences apply to all drugs, in this paper, I primarily discuss them for marijuana, cocaine, and opiates since these drugs are the most commonly used. My paper will include an exploration of the reasons behind

Abstract Kicking the Habit: Reforming Mandatory Minimums for Drug Crimes Ashley Allen While mandatory minimum sentences apply to all drugs, in this paper, I primarily discuss them for marijuana, cocaine, and opiates since these drugs are the most commonly used. My paper will include an exploration of the reasons behind the implementation of mandatory minimum sentences, an analysis of the problems involved with enforcing them, and a discussion about the harms such enforcement has on communities. While mandatory minimums were introduced to prevent discrimination in sentencing as people of color often faced much harsher sentences, the minimums have not been a lasting solution; rather these sentencing techniques have become a major component of the problems communities face associated with drug use. They enforce negative stereotypes and cycles of drug use, do not promote rehabilitation, and unnecessarily burden the judicial and prison systems. I will discuss both successful and failed attempts to reform these laws, and finally offer possible solutions for rethinking mandatory minimum laws, including harm reduction, sentencing restructuring, and the reform of federal laws.
ContributorsAllen, Ashely (Author) / Henderson, Deborah (Thesis director) / Espino, Rodolfo (Committee member) / Walker, Michael (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
ContributorsLynn, Jeffrey Spencer (Author) / Neisewander, Janet (Thesis director) / Orchinik, Miles (Committee member) / Bastle, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
134455-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found

MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found miR-495 is downregulated in the NAc following acute cocaine administration, and cocaine motivation measured by breakpoint on a progressive ratio schedule of cocaine reinforcement is decreased when miR-495 is overexpressed. In this study, we manipulated the endogenous levels of miR-495 by using a viral vector. Using an animal model, rats were first trained for self-administration on a fixed ratio (FR) schedule of reinforcement. After they were infused with a lentivirus to overexpress (LV-miR-495) or decrease (LV-Sponge) miR-495, in the NAc shell. The rats were then tested for extinction and reinstatement of cocaine-seeking behavior, which are measures of motivation for cocaine. We measured the relative levels of miR-495 in the NAc shell using qRT-PCR. Our results show that overexpression of miR-495 decreased cocaine-seeking behavior during extinction and cocaine reinstatement, as we hypothesized. Surprisingly, miR-495 LV-sponge also decreased cocaine-seeking behavior in extinction, not as we hypothesized. However, we found that LV-Sponge failed to significantly decrease levels of miR-495 as intended. In conclusion, understanding why LV-Sponge decreased, rather than increased, miR-495 will need further study, however, the results with LV-miR-495 extend previous findings that miR-495 plays a vital role in the molecular mechanism that influences motivation to seek cocaine.
ContributorsChaudhury, Trisha (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Powell, Gregory (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05