Matching Items (3)
Filtering by

Clear all filters

136499-Thumbnail Image.png
Description
In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal

In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal of attention because of its potential to generate pure spin currents using a thermal gradient (∇T), such as the spin Seebeck effect. However, unlike electric potential, the exact thermal gradient direction is experimentally difficult to control, which has already caused misinterpretation of the thermal effects in Py and Py/Pt films. In this work, we show that a well-defined ∇T can be created by two thermoelectric coolers (TECs) based on Peltier effect. The ∇T as well as its sign can be accurately controlled by the driven voltage on the TECs. Using a square-wave driven potential, thermal effects of a few μV can be measured. Using this technique, we have measured the anomalous Nernst effect in magnetic Co/Py and Py/Pt layers and determined their angular dependence. The angular dependence shows the same symmetry as the anomalous Hall effect in these films.
This work has been carried out under the guidance of the author’s thesis advisor, Professor Tingyong Chen.
ContributorsSimaie, Salar (Author) / Chen, Tingyon (Thesis director) / Alizadeh, Iman (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor)
Created2015-05
137705-Thumbnail Image.png
Description
The purpose of this honors thesis was to create a quadcopter equation of motion software model in order to develop a control system to make the quadcopter autonomous. This control system was developed using Matlab and Simulink, and the aspects of the quadcopter's flight that were chosen to be controlled

The purpose of this honors thesis was to create a quadcopter equation of motion software model in order to develop a control system to make the quadcopter autonomous. This control system was developed using Matlab and Simulink, and the aspects of the quadcopter's flight that were chosen to be controlled were the roll angle, pitch angle, and height of the quadcopter. Upon the completion of this control system model, the actual quadcopter was to be constructed, flown, and used to collect experimental data for comparison to the model. However, the hardware was never made available due to back order problems, and so unfortunately no experimental data from actual test flights was able to be gathered and compared to the Simulink control system model. None the less, the final Simulink model is still accurate because the actual geometry of the chosen quadcopter was used during simulation (including the moments of inertia and moment arm lengths). To begin, background research into quadcopter design is presented to give insight into the progress that has been made in the design of this type of aircraft. The equations of motion for the quadcopter considered in the control system are then derived through the use of twelve state variables. The Simulink model for the open loop system was then constructed in a fashion that converts the change in rotor thrust to the associated orientation angles of the quadcopter. Linear approximations were then used to distinguish the open loop transfer functions for each controlled variable (roll angle, pitch angle, and height), and compensators were designed for the control system in order to produce a natural frequency and damping that allowed for a 5% settling time of approximately two seconds.
ContributorsBolton, Taylor Charles (Author) / Wells, Valana (Thesis director) / Garrett, Frederick (Committee member) / Alizadeh, Iman (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05