Matching Items (10)
Filtering by

Clear all filters

136641-Thumbnail Image.png
Description
This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as

This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as well as contemporary fire policy, a history of wildfire in Arizona, and two recent fires in Sedona, AZ. The two fires in Sedona, the Brins Fire of 2006 and the Slide Fire of 2014, act as a focal point for this ecological management transition, as even within an 8-year period, we can see the different ways the two fires were managed and the transition to a greater ecological importance in management strategies. These all came together to give a full spectrum for the factors that have led to more ecologically-prominent wildfire management strategies in Arizona.
ContributorsGeorge-Sills, Dylan (Author) / Pyne, Stephen (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2015-05
133193-Thumbnail Image.png
Description
The Foundation for Individual Rights in Education (FIRE) is an organization dedicated to defending student and faculty freedom of speech rights on college campuses in the United States. Their work has brought national attention and debate around how unbiased the foundation truly is. This thesis discusses the relevant cases around

The Foundation for Individual Rights in Education (FIRE) is an organization dedicated to defending student and faculty freedom of speech rights on college campuses in the United States. Their work has brought national attention and debate around how unbiased the foundation truly is. This thesis discusses the relevant cases around the freedom of speech such as United States v. O'Brien and Matal v. Tam in order to develop an understanding of general free speech protection. Free speech cases specifically regarding school campuses were analyzed such as Tinker v. Des Moines, Bethel v. Fraser, and Rosenberger v. University of Virginia to show the limitations of what FIRE can fight on campuses. FIRE's case selection methods were analyzed, and a bias toward conservative cases was found. This bias is disputed by FIRE supporters as natural given the liberal nature of higher education, but data surrounding professors, disinvitation attempts, and student opinions invalidate these claims. Three FIRE cases (Roberts v. Haragan, Smith v. Tarrant County College District, and the Dixie State Incident) were analyzed to show the progression and style of the foundation through the years and how they developed their aggressive and bully reputation. Finally, current large incidents of free speech oppression were analyzed to understand how they skew and affect public perception of the overall struggle for freedom of speech on college campuses. This thesis found that FIRE is in fact biased and that their efforts to make positive change are undermined by this. Keywords: FIRE, free speech, First Amendment
ContributorsRamos-Mata, Joseph Wilfrido (Author) / von Delden, Jayn (Thesis director) / Fradella, Hank (Committee member) / School of Social Transformation (Contributor) / School of Public Affairs (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
148161-Thumbnail Image.png
Description

Fire is a naturally-occurring disruptive ecological force that is an essential part of certain ecosystems, and has historically been a tool used by indigenous fire stewards to maintain the health of the land. In the past century, fire has been severely suppressed throughout many areas of the Western United States

Fire is a naturally-occurring disruptive ecological force that is an essential part of certain ecosystems, and has historically been a tool used by indigenous fire stewards to maintain the health of the land. In the past century, fire has been severely suppressed throughout many areas of the Western United States as Western colonization and the suppression of native traditional ecological knowledge took place, causing a severe decline in ecosystem health and the accumulation of flammable vegetation, which has more recently contributed towards a frequency of catastrophic, high-intensity wildfires. Current fire management challenges include balancing social and ecological perspectives. In Colorado and other areas of the country, community wildfire protection plans (CWPP) are evolving as a means to involve a variety of community stakeholders in fire management decisions. Using Colorado CWPP boundaries as a social management unit and endangered species ranges as an ecological management unit, I analyzed the spatial overlap of these different factors. Since each CWPP has its own fire management policies, I drew implications from the results for which important factors different CWPPs should consider.

ContributorsAzuma, Erin (Author) / Kroetz, Kailin (Thesis director) / Iacona, Gwen (Committee member) / Hamilton, Matthew (Committee member) / School of Life Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Thunderbird School of Global Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147795-Thumbnail Image.png
Description

We analyzed multiple different models that can be utilized when measuring effects effects of fire and fire behavior in a forest ecosystem. In the thesis we focused on exploring ordinary differential equations, stochastic models, and partial differential equations

ContributorsVo, Sabrina (Author) / Jones, Donald (Thesis director) / Parker, Nathan (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
131795-Thumbnail Image.png
Description
In an era where college undergraduates are spending five dollars on a cup of coffee and ten dollars on avocado toast, now seems like an appropriate time to reevaluate these questions:
• Are current college undergraduates interested in the idea of saving for retirement?
• Do they have realistic expectations about how

In an era where college undergraduates are spending five dollars on a cup of coffee and ten dollars on avocado toast, now seems like an appropriate time to reevaluate these questions:
• Are current college undergraduates interested in the idea of saving for retirement?
• Do they have realistic expectations about how much money they need to save in order to live comfortably during retirement?
• Are there differences in expectations between people who are interested in saving for retirement using traditional means and people who are interested in saving for retirement using the extreme-saving FIRE (Financial Independence Retire Early) method?

This paper examines students’ interest in the idea of saving for retirement through a series of lenses: demographics, financial retirement literacy, and expressed commitment to save for retirement. I hypothesized that traditional retirement expected savers and FIRE expected savers, who correctly answer financial retirement literacy questions, are realistic about how much money they will need to save in order to live comfortably during retirement. To investigate this, a survey was sent out to two ASU Tempe campus business classes; 171 completed responses were analyzed. The statistical analysis of the unfiltered survey results showed three findings, but one finding stood out the most: Students who know what a 401k is (Question 5 in Exhibit 1) are significantly more likely to plan on saving for retirement, when compared to students who don’t know what a 401k is.

When filtering survey results to only show responses from students who know what a 401k is, median responses show that traditional retirement expected savers are somewhat realistic with their retirement savings expectations, while FIRE expected savers are not realistic with their retirement savings expectations.
ContributorsDeSantangilo, Nicholas Charles (Author) / Radway, Debra (Thesis director) / Roberts, Nancy (Committee member) / Department of Finance (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131465-Thumbnail Image.png
Description
The temperature of exhaust pipes can be dangerous in dry areas where there is a lot of brush. The temperatures of exhaust pipes can reach a high enough temperature to start a fire if touching the dry brush, which ignites around 300°C. The goal of this project was to explore

The temperature of exhaust pipes can be dangerous in dry areas where there is a lot of brush. The temperatures of exhaust pipes can reach a high enough temperature to start a fire if touching the dry brush, which ignites around 300°C. The goal of this project was to explore different techniques to limit the possibility of these brush fires. Specifically, different methods were explored to reduce the temperature of the pipe that would be contacting the brush. Fires can begin within seconds of contacting the hot exhaust pipes [10]. This experiment found that of the three options tested: exhaust wrap, heat sink with thermoelectric devices, and high temperature paint, adding a heat shield/sink is the best way to limit the high temperatures from igniting the brush. There was a cooling difference of nearly 100°C when a heat shield/sink was added to the bare pipe. The additional thermal mass as well as the finned heat sinks attached to the heat sink helped dissipate the heat from the pipe and release the waste heat into the surroundings. The increase in surface area in correspondence with forced convection from the surrounding air lowered the temperature of the metal in contact with the dry brush.
ContributorsHodges, Andrew (Author) / Benson, David (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164350-Thumbnail Image.png
Description

The objective of this study was to investigate if 911 operators experience similar stressors and amounts of stress as law enforcement, fire, and EMS personnel. To accomplish this, I conducted a focus group to obtain information about similar stressors experienced by all three areas of emergency services. Then I utilized

The objective of this study was to investigate if 911 operators experience similar stressors and amounts of stress as law enforcement, fire, and EMS personnel. To accomplish this, I conducted a focus group to obtain information about similar stressors experienced by all three areas of emergency services. Then I utilized this information to form a survey to quantify the amounts of stress experienced by emergency service personnel. My findings indicate that the stress experience is similar.

ContributorsGreil, Amanda (Author) / LePine, Marcie (Thesis director) / Veach, Paula (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05