Matching Items (3)

135177-Thumbnail Image.png

Detection of Muscle Specific EMG Signals in Post Stroke Patients

Description

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems when converting from the laboratory to marketable devices, specifically in home devices. Many patients have issues with needles and the extra care required of needle EMG is prohibitive. Therefore, a surface EMG device that can obtain clear signals from individual muscles would be valuable to many markets in the development of next generation in home devices. Here, signals from surface EMG were analyzed using a low noise EMG evaluation system (RHD 2000; Intan Technologies). The signal to noise ratio (SNR) was calculated using MatLab. The average SNR is 4.447 for the Extensor Carpi Ulnaris, and 7.369 for the Extensor Digitorum Communis. Spectral analysis was performed using the Welch approach in MatLab. The power spectrum indicated that low frequency signals dominate the EMG of small hand muscles. Also, harmonic bands of 60Hz noise were present as part of the signal which should be accounted for with filters in future iterations of the testing method. Provided is evidence that strong, independent signals were acquired and could be used in further application of surface EMG corresponding to lifting of the fingers.

Contributors

Created

Date Created
  • 2016-05

133225-Thumbnail Image.png

Using Goodness of Pronunciation Features for Spoken Nasality Detection

Description

Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor

Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with a range of conditions, including cleft lip or palate, velopharyngeal dysfunction (a physical or neurological defective closure of the soft palate that regulates resonance between the oral and nasal cavity), dysarthria, or hearing impairment, and can also be an early indicator of developing neurological disorders such as ALS. Hypernasality is typically scored perceptually by a Speech Language Pathologist (SLP). Misdiagnosis could lead to inadequate treatment plans and poor treatment outcomes for a patient. Also, for some applications, particularly screening for early neurological disorders, the use of an SLP is not practical. Hence this work demonstrates a data-driven approach to objective assessment of hypernasality, through the use of Goodness of Pronunciation features. These features capture the overall precision of articulation of speaker on a phoneme-by-phoneme basis, allowing demonstrated models to achieve a Pearson correlation coefficient of 0.88 on low-nasality speakers, the population of most interest for this sort of technique. These results are comparable to milestone methods in this domain.

Contributors

Agent

Created

Date Created
  • 2018-05

131461-Thumbnail Image.png

Music Mood Classification

Description

Spotify, one of the most popular music streaming services, has many
algorithms for recommending new music to users. However, at the
core of their recommendations is the collaborative filtering algorithm,

Spotify, one of the most popular music streaming services, has many
algorithms for recommending new music to users. However, at the
core of their recommendations is the collaborative filtering algorithm,
which recommends music based on what other people with similar
tastes have listened to [1]. While this can produce highly relevant
content recommendations, it tends to promote only popular content
[2]. The popularity bias inherent in collaborative-filtering based
systems can overlook music that fits a user’s taste, simply because
nobody else is listening to it. One possible solution to this problem is
to recommend music based on features of the music itself, and
recommend songs which have similar features. Here, a method for
extracting high-level features representing the mood of a song is
presented, with the aim of tailoring music recommendations to an
individual's mood, and providing music recommendations with
diversity in popularity.

Contributors

Agent

Created

Date Created
  • 2020-05