Matching Items (7)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152807-Thumbnail Image.png
Description
Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance

Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance students' opportunity to construct a meaning for a function's inverse and, out of that meaning, produce ways to define a function's inverse without memorizing some procedure. This paper presents a proposed instructional sequence that promotes reflective abstraction in order to help students develop a process conception of function and further understand the meaning of a function inverse. The instructional sequence was used in a teaching experiment with three subjects and the results are presented here. The evidence presented in this paper supports the claim that the proposed instructional sequence has the potential to help students construct meanings needed for understanding function inverse. The results of this study revealed shifts in the understandings of all three subjects. I conjecture that these shifts were achieved by posing questions that promoted reflective abstraction. The questions and subsequent interactions appeared to result in all three students moving toward a process conception of function.
ContributorsFowler, Bethany (Author) / Carlson, Marilyn (Thesis advisor) / Roh, Kyeong (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2014
153384-Thumbnail Image.png
Description
Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught

Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught at either the high school or the college level. To remedy this, I present a new educational system intended to teach computational thinking called Genost. Genost consists of a software tool and a curriculum based on teaching computational thinking through fundamental programming structures and algorithm design. Genost's software design is informed by a review of eight major computer science educational software systems. Genost's curriculum is informed by a review of major literature on computational thinking. In two educational tests of Genost utilizing both college and high school students, Genost was shown to significantly increase computational thinking ability with a large effect size.
ContributorsWalliman, Garret (Author) / Atkinson, Robert (Thesis advisor) / Chen, Yinong (Thesis advisor) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2015
150677-Thumbnail Image.png
Description
The purpose of this writing is to explore the relationship students have with popular media as well as the call to implement a Critical Media Skills course at the high school level. The research was interested in finding what images from popular media students were taking into their personal lives

The purpose of this writing is to explore the relationship students have with popular media as well as the call to implement a Critical Media Skills course at the high school level. The research was interested in finding what images from popular media students were taking into their personal lives and how implementing a Critical Media Skills course could make positive benefits into their lives. From casual observations, informal student interviews, and the creation of an online survey in which 72 high school students participated I was able to collect data about the extent students were consuming popular media and how they believed that skills teaching them to analyze media would be beneficial. From these findings I was able to build upon Patricia Hill Collins (2009) to develop techniques for a classroom in which critical dialogue would be a focus. This exploratory study takes into account student voices, as well research from others in the field of Education and Media Literacy.
ContributorsGonzales, David (Author) / Ovando, Carlos (Thesis advisor) / Sandlin, Jennifer (Committee member) / Surbeck, Elaine (Committee member) / Arizona State University (Publisher)
Created2012
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
155239-Thumbnail Image.png
Description
Civilian and military use of remotely piloted aircraft (RPA) has significantly increased in recent years. Specifically, the United States Air Force (USAF) has an insatiable demand for RPA operations, that are responsible for fulfilling critical demands in every theater 24 hours a day, 365 days a year (United States Air

Civilian and military use of remotely piloted aircraft (RPA) has significantly increased in recent years. Specifically, the United States Air Force (USAF) has an insatiable demand for RPA operations, that are responsible for fulfilling critical demands in every theater 24 hours a day, 365 days a year (United States Air Force, 2015). Around the clock operations have led to a manning shortage of RPA pilots in the USAF. The USAF MQ-9 “Reaper” Weapons School trains tactical experts and leaders of Airmen skilled in the art of integrated battle-space dominance (United States Air Force, 2015). Weapons Officers for the MQ-9 platform are also critically under-manned, with only 17% of allocated slots filled (B. Callahan, personal communication, January 28, 2016). Furthermore, the leading cause of training attrition has been attributed to lack of critical thinking and problem solving skills (B. Callahan, personal communication, January 28, 2016); skills not directly screened for prior to entering the RPA pilot career field. The proposed study seeks to discover patterns of student behaviors in the brief and debrief process in Weapons School, with the goal of identifying the competencies that distinguish the top students in Weapons School.
ContributorsDriggs, Jade B (Author) / Cooke, Nancy J. (Thesis advisor) / Niemczyk, Mary (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2017