Matching Items (14)

Filtering by

Clear all filters

133499-Thumbnail Image.png

Investigating the Relationship between Neighborhood Socioeconomic Status and Proximity to Public Services

Description

With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire

With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire stations, and police stations), first by researching the background of these services and their relation to poverty, and then by conducting geospatial and regression analysis. The author uses Esri's ArcGIS Pro software to quantify the proximity to public services from urban American neighborhoods (census tracts in the cities of Phoenix and Chicago). Afterwards, the measures indicating proximity are compared to the socioeconomic statuses of neighborhoods using regression analysis. The results indicate that pure proximity to these four services is not necessarily correlated to socioeconomic status. While the paper does uncover some correlations, such as a relationship between school quality and socioeconomic status, the majority of the findings negate the author's hypothesis and show that, in Phoenix and Chicago, there is not much discrepancy between neighborhoods and the extent to which they are able to access vital government-funded services.

Contributors

Agent

Created

Date Created
2018-05

133441-Thumbnail Image.png

The Cognitive Audit: The Effects of Cognitive Computing on Financial Audit Roles of Tomorrow

Description

Cognitive technology has been at the forefront of the minds of many technology, government, and business leaders, because of its potential to completely revolutionize their fields. Furthermore, individuals in financial statement auditor roles are especially focused on the impact of

Cognitive technology has been at the forefront of the minds of many technology, government, and business leaders, because of its potential to completely revolutionize their fields. Furthermore, individuals in financial statement auditor roles are especially focused on the impact of cognitive technology because of its potential to eliminate many of the tedious, repetitive tasks involved in their profession. Adopting new technologies that can autonomously collect more data from a broader range of sources, turn the data into business intelligence, and even make decisions based on that data begs the question of whether human roles in accounting will be completely replaced. A partial answer: If the ramifications of past technological advances are any indicator, cognitive technology will replace some human audit operations and grow some new and higher order roles for humans. It will shift the focus of accounting professionals to more complex judgment and analysis.
The next question: What do these changes in the roles and responsibilities look like for the auditors of the future? Cognitive technology will assuredly present new issues for which humans will have to find solutions.
• How will humans be able to test the accuracy and completeness of the decisions derived by cognitive systems?
• If cognitive computing systems rely on supervised learning, what is the most effective way to train systems?
• How will cognitive computing fair in an industry that experiences ever-changing industry regulations?
• Will cognitive technology enhance the quality of audits?
In order to answer these questions and many more, I plan on examining how cognitive technologies evolved into their use today. Based on this historic trajectory, stakeholder interviews, and industry research, I will forecast what auditing jobs may look like in the near future taking into account rapid advances in cognitive computing.
The conclusions forecast a future in auditing that is much more accurate, timely, and pleasant. Cognitive technologies allow auditors to test entire populations of transactions, to tackle audit issues on a more continuous basis, to alleviate the overload of work that occurs after fiscal year-end, and to focus on client interaction.

Contributors

Agent

Created

Date Created
2018-05

134373-Thumbnail Image.png

Analytics of the Prospect Draft in Major League Baseball

Description

Our research encompassed the prospect draft in baseball and looked at what type of player teams drafted to maximize value. We wanted to know which position returned the best value to the team that drafted them, and which level is

Our research encompassed the prospect draft in baseball and looked at what type of player teams drafted to maximize value. We wanted to know which position returned the best value to the team that drafted them, and which level is safer to draft players from, college or high school. We decided to look at draft data from 2006-2010 for the first ten rounds of players selected. Because there is only a monetary cap on players drafted in the first ten rounds we restricted our data to these players. Once we set up the parameters we compiled a spreadsheet of these players with both their signing bonuses and their wins above replacement (WAR). This allowed us to see how much a team was spending per win at the major league level. After the data was compiled we made pivot tables and graphs to visually represent our data and better understand the numbers. We found that the worst position that MLB teams could draft would be high school second baseman. They returned the lowest WAR of any player that we looked at. In general though high school players were more costly to sign and had lower WARs than their college counterparts making them, on average, a worse pick value wise. The best position you could pick was college shortstops. They had the trifecta of the best signability of all players, along with one of the highest WARs and lowest signing bonuses. These were three of the main factors that you want with your draft pick and they ranked near the top in all three categories. This research can help give guidelines to Major League teams as they go to select players in the draft. While there are always going to be exceptions to trends, by following the enclosed research teams can minimize risk in the draft.

Contributors

Agent

Created

Date Created
2017-05

133988-Thumbnail Image.png

Age and Upside: Why Youth Should be Valued in the NBA

Description

The National Basketball Association is the world's most recognized professional basketball league. Athletes such as Kobe Bryant and Lebron James have transcended from being high school standouts to global icons, but their careers might not have panned out the same

The National Basketball Association is the world's most recognized professional basketball league. Athletes such as Kobe Bryant and Lebron James have transcended from being high school standouts to global icons, but their careers might not have panned out the same way if they weren't allowed to declare for the draft immediately upon graduating high school. In 2005, the NBA and the NBA Players Association agreed to implement an age limit for athletes declaring for the NBA Draft. Although this was supposed to reduce the quantity of younger players declaring for the draft, the rule has been ineffective as the average age of lottery picks, also known as the first 14 picks of the draft, has decreased since the rule's implementation. Adam Silver, the current commissioner of the NBA, has been vocal about potentially raising the minimum draft-eligible age once more because of NBA team executives calling recent draft picks unfit for the NBA. The purpose of this research is to examine if lottery picks are indeed "NBA ready" upon being drafted, and if there is a correlation between the age at which they are drafted, the pick at which they were selected, the length of their career, and their career success. Various statistical analysis techniques are utilized, such as the calculation of R-squared values and correlation coefficients, and the usage of t-tests and multiple regressions. Box score statistics such as minutes per game, points per game, rebounds, and assists as well as advanced metrics such as player efficiency rating, win shares, box plus/minus, and value over replacement player were the focal point of this study. Players drafted with lottery selections from the 1985-2016 drafts had their career statistics compiled and examined for this analysis in order to adequately conduct the regressions. The results indicate that although lottery picks are having a decreasing immediate impact upon being drafted, the younger an athlete is drafted, the more long-term success they can expect to achieve in the NBA.

Contributors

Agent

Created

Date Created
2018-05

133924-Thumbnail Image.png

Sagebrush Coffee: Applying Data Analytics to Customer Purchases

Description

Sagebrush Coffee is a small business in Chandler, Arizona that purchases green beans, roasts them in small batches for quality, and ships fresh, gourmet roasted coffee beans across the nation. Deciding which coffee beans to buy and roast is one

Sagebrush Coffee is a small business in Chandler, Arizona that purchases green beans, roasts them in small batches for quality, and ships fresh, gourmet roasted coffee beans across the nation. Deciding which coffee beans to buy and roast is one of the most crucial business decisions Sagebrush and other gourmet coffee roasters face. Further complicating this decision is the fact that coffee is a crop, and like all crops, has a specific growing season and the exact same product cannot usually be ordered from year to year, even if it proves to be successful. The goal of this research is to use data analytics and visualization to help Sagebrush make better purchasing decisions by identifying consumer purchasing trends and providing a recommendation for their portfolio mix. In the end, I found that Latin American coffees are popular with both returning and first-time customers, but a specific country of origin does not appear to be associated with the top coffee producing countries. Additionally, December is a critical month for Sagebrush and Sagebrush should make sure to target the states with the most sales: California, Pennsylvania, and New York. Arizona has growth potential as it is not one of the top three locations, despite the presence of a physical store. Also included in the following report is a portfolio recommendation suggesting how many of each product based on region, processing type, and roast level to carry in inventory.

Contributors

Created

Date Created
2018-05

136992-Thumbnail Image.png

Monocular

Description

Monocular is a user engagement application that offers a website owner the opportunity to track user behavior and use the data to better understand the site's strengths and weaknesses in terms of user satisfaction and motivation. This data allows the

Monocular is a user engagement application that offers a website owner the opportunity to track user behavior and use the data to better understand the site's strengths and weaknesses in terms of user satisfaction and motivation. This data allows the customer to make improvements to a website, resulting in a better user experience and potential for an improved bottom line.

Contributors

Agent

Created

Date Created
2014-05

135558-Thumbnail Image.png

Value of Twitter: Using Text Mining Methods to Gain Insight into the 2016 Presidential Race

Description

This project analyzes the tweets from the 2016 US Presidential Candidates' personal Twitter accounts. The goal is to define distinct patterns and differences between candidates and parties use of social media as a platform. The data spans the period of

This project analyzes the tweets from the 2016 US Presidential Candidates' personal Twitter accounts. The goal is to define distinct patterns and differences between candidates and parties use of social media as a platform. The data spans the period of September 2015 to March 2016, which was during the primary races for the Republicans and Democrats. The overall purpose of this project is to contribute to finding new ways of driving value from social media, in particular Twitter.

Contributors

Created

Date Created
2016-05

148420-Thumbnail Image.png

Home Advantage in Sports: The Value it Holds with COVID Restrictions

Description

Home advantage affects the game in almost all team sports across the world. Due to<br/>COVID and all of the precautions being taken to keep games played, more extensive research is able to be conducted about what factors truly go into

Home advantage affects the game in almost all team sports across the world. Due to<br/>COVID and all of the precautions being taken to keep games played, more extensive research is able to be conducted about what factors truly go into creating a home advantage. Some common factors of home advantage include the crowd, facility familiarity, and travel. In the English Premier League, there are no fans allowed at any of the games; furthermore, in the NBA, a bubble was created at one neutral venue with no fans in attendance. Even with the NBA being at a neutral site, there was still a “home team” at every game. The sports betting industry struggled due to failing to shift betting lines in accordance with this decreased home advantage. With these leagues removing some of the factors that are frequently associated with home advantage, analysts are able to better see what the results would be of removing these variables. The purpose of this research is to determine if these adjustments made due to COVID had an impact on the home advantage in different leagues around the world, and if they did, to what extent. Individual game data from the past 10 seasons were used for analysis of both the NBA and the Premier League. The results show that there is a significant difference in win percentage between prior seasons and seasons behind closed doors. In addition to win percentage, many other game statistics see a significant shift as well. Overall, the significance of being the home team disappears in games following the COVID-19 break.

Contributors

Agent

Created

Date Created
2021-05

148125-Thumbnail Image.png

A Study of Win Expectancy Estimators in Major League Baseball

Description

In recent years, advanced metrics have dominated the game of Major League Baseball. One such metric, the Pythagorean Win-Loss Formula, is commonly used by fans, reporters, analysts and teams alike to use a team’s runs scored and runs allowed to

In recent years, advanced metrics have dominated the game of Major League Baseball. One such metric, the Pythagorean Win-Loss Formula, is commonly used by fans, reporters, analysts and teams alike to use a team’s runs scored and runs allowed to estimate their expected winning percentage. However, this method is not perfect, and shows notable room for improvement. One such area that could be improved is its ability to be affected drastically by a single blowout game, a game in which one team significantly outscores their opponent.<br/>We hypothesize that meaningless runs scored in blowouts are harming the predictive power of Pythagorean Win-Loss and similar win expectancy statistics such as the Linear Formula for Baseball and BaseRuns. We developed a win probability-based cutoff approach that tallied the score of each game once a certain win probability threshold was passed, effectively removing those meaningless runs from a team’s season-long runs scored and runs allowed totals. These truncated totals were then inserted into the Pythagorean Win-Loss and Linear Formulas and tested against the base models.<br/>The preliminary results show that, while certain runs are more meaningful than others depending on the situation in which they are scored, the base models more accurately predicted future record than our truncated versions. For now, there is not enough evidence to either confirm or reject our hypothesis. In this paper, we suggest several potential improvement strategies for the results.<br/>At the end, we address how these results speak to the importance of responsibility and restraint when using advanced statistics within reporting.

Contributors

Created

Date Created
2021-05

135074-Thumbnail Image.png

Impulse Spending with Data

Description

Data is ever present in the world today. Data can help predict presidential elections, Super Bowl champions, and even the weather. However, it's very hard, if not impossible, to predict how people feel unless they tell us. This is when

Data is ever present in the world today. Data can help predict presidential elections, Super Bowl champions, and even the weather. However, it's very hard, if not impossible, to predict how people feel unless they tell us. This is when impulse spending with data comes in handy. Companies are constantly looking for ways to get honest feedback when they are doing market research. Often, the research obtained ends up being unreliable or biased in some way. Allowing users to make impulse purchases with survey data is the answer. Companies can still gather the data that they need to do market research and customers can get more features or lives for their favorite games. It becomes a win-win for both users and companies. By adding the option to pay with information instead of money, companies can still get value out of frugal players. Established companies might not care so much about the impulse spending for purchases made in the application, however they would find a great deal of value in hearing about what customers think of their product or upcoming event. The real value from getting data from customers is the ability to train analytics models so that companies can make better predictions about consumer behavior. More accurate predictions can lead to companies being better prepared to meet the needs to the customer. Impulse spending with data provides the foundation to creating a software that can create value from all types of users regardless of whether the user is willing to spend money in the application.

Contributors

Agent

Created

Date Created
2016-12