Matching Items (2)
Filtering by

Clear all filters

152308-Thumbnail Image.png
Description
Despite the critical role that the vertebral column plays in postural and locomotor behaviors, the functional morphology of the cervical region (i.e., the bony neck) remains poorly understood, particularly in comparison to that of the thoracic and lumbar sections. This dissertation tests the hypothesis that morphological variation in cervical vertebrae

Despite the critical role that the vertebral column plays in postural and locomotor behaviors, the functional morphology of the cervical region (i.e., the bony neck) remains poorly understood, particularly in comparison to that of the thoracic and lumbar sections. This dissertation tests the hypothesis that morphological variation in cervical vertebrae reflects differences in positional behavior (i.e., suspensory vs. nonsuspensory and orthograde vs. pronograde locomotion and postures). Specifically, this project addresses two broad research questions: (1) how does the morphology of cervical vertebrae vary with positional behavior and cranial morphology among primates and (2) where does fossil hominoid morphology fall within the context of the extant primates. Three biomechanical models were developed for the primate cervical spine and their predictions were tested by conducting a comparative analysis using a taxonomically and behaviorally diverse sample of primates. The results of these analyses were used to evaluate fossil hominoid morphology. The two biomechanical models relating vertebral shape to positional behaviors are not supported. However, a number of features distinguish behavioral groups. For example, the angle of the transverse process in relation to the cranial surface of the vertebral body--a trait hypothesized to reflect the deep spinal muscles' ability to extend and stabilize the neck--tends to be greater in pronograde species; this difference is in the opposite of the direction predicted by the biomechanical models. Other traits distinguish behavioral groups (e.g., spinous process length and cross-sectional area), but only in certain parts of the cervical column. The correlation of several vertebral features, especially transverse process length and pedicle cross-sectional area, with anterior cranial length supports the predictions made by the third model that links cervical morphology with head stabilization (i.e., head balancing). Fossil hominoid cervical remains indicate that the morphological pattern that characterizes modern humans was not present in Homo erectus or earlier hominins. These hominins are generally similar to apes in having larger neural arch cross-sectional areas and longer spinous processes than modern humans, likely indicating the presence of comparatively large nuchal muscles. The functional significance of this morphology remains unclear.
ContributorsNalley, Thierra Kénnec (Author) / Kimbel, William H. (Thesis advisor) / Reed, Kaye (Committee member) / Shapiro, Liza (Committee member) / Arizona State University (Publisher)
Created2013
150702-Thumbnail Image.png
Description
Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its

Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. Identifying factors that affect CVT would be exceedingly valuable in teasing apart potential contributors to thick vaults in the Pleistocene. Four hypotheses were tested using CT scans of skulls of more than 1100 human and non-human primates. Data on total frontal, parietal, and occipital bone thickness and bone composition were collected to test the hypotheses: H1. CVT is an allometric consequence of brain or body size. H2. Thick cranial vaults are a response to long, low cranial vault shape. H3. High masticatory stress causes localized thickening of cranial vaults. H4. Activity-mediated systemic hormone levels affect CVT. Traditional comparative methods were used to identify features that covary with CVT across primates to establish behavior patterns that might correlate with thick cranial vaults. Secondly, novel experimental manipulation of a model organism, Mus musculus, was used to evaluate the relative plasticity of CVT. Finally, measures of CVT in fossil hominins were described and discussed in light of the extant comparative and experimental results. This dissertation reveals previously unknown variation among extant primates and humans and illustrates that Homo erectus is not entirely unique among primates in its CVT. The research suggests that it is very difficult to make a mouse grow a thick head, although it can be genetically programmed to have one. The project also identifies a possible hominin synapomorphy: high diploë ratios compared to non-human primates. It also found that extant humans differ from non-human primates in overall pattern of which cranial vault bones are thickest. What this project was unable to do was definitively provide an explanation for why and how Homo erectus grew thick skulls. Caution is required when using CVT as a diagnostic trait for Homo erectus, as the results presented here underscore the complexity inherent in its evolution and development.
ContributorsCopes, Lynn (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark A. (Committee member) / Ravosa, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2012