Matching Items (5)
Filtering by

Clear all filters

136433-Thumbnail Image.png
Description
This paper uses network theory to simulate Nash equilibria for selfish travel within a traffic network. Specifically, it examines the phenomenon of Braess's Paradox, the counterintuitive occurrence in which adding capacity to a traffic network increases the social costs paid by travelers in a new Nash equilibrium. It also employs

This paper uses network theory to simulate Nash equilibria for selfish travel within a traffic network. Specifically, it examines the phenomenon of Braess's Paradox, the counterintuitive occurrence in which adding capacity to a traffic network increases the social costs paid by travelers in a new Nash equilibrium. It also employs the measure of the price of anarchy, a ratio between the social cost of the Nash equilibrium flow through a network and the socially optimal cost of travel. These concepts are the basis of the theory behind undesirable selfish routing to identify problematic links and roads in existing metropolitan traffic networks (Youn et al., 2008), suggesting applicative potential behind the theoretical questions this paper attempts to answer. New topologies of networks which generate Braess's Paradox are found. In addition, the relationship between the number of nodes in a network and the number of occurrences of Braess's Paradox, and the relationship between the number of nodes in a network and a network's price of anarchy distribution are studied.
ContributorsChotras, Peter Louis (Author) / Armbruster, Dieter (Thesis director) / Lanchier, Nicolas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2015-05
133986-Thumbnail Image.png
Description
Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the efficiency of an intersection through the use of "light metering." Light metering involves a series of lights leading up to

Commuting is a significant cost in time and in travel expenses for working individuals and a major contributor to emissions in the United States. This project focuses on increasing the efficiency of an intersection through the use of "light metering." Light metering involves a series of lights leading up to an intersection forcing cars to stop further away from the final intersection in smaller queues instead of congregating in a large queue before the final intersection. The simulation software package AnyLogic was used to model a simple two-lane intersection with and without light metering. It was found that light metering almost eliminates start-up delay by preventing a long queue to form in front of the modeled intersection. Shorter queue lengths and reduction in the start-up delays prevents cycle failure and significantly reduces the overall delay for the intersection. However, frequent deceleration and acceleration for a few of the cars occurs before each light meter. This solution significantly reduces the traffic density before the intersection and the overall delay but does not appear to be a better emission alternative due to an increase in acceleration. Further research would need to quantify the difference in emissions for this model compared to a standard intersection.
ContributorsGlavin, Erin (Author) / Pavlic, Theodore (Thesis director) / Sefair, Jorge (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135785-Thumbnail Image.png
Description
Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which

Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which alternatives would be compared to. Four alternatives were identified, and the two that could be modeled in simulation software were both found to be technically feasible in the preliminary analysis.
ContributorsFellows, Christopher Lee (Author) / Lou, Yingyan (Thesis director) / Zhou, Xuesong (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131665-Thumbnail Image.png
Description
Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout

Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout in Sedona, Arizona; which is currently experiencing significant congestion. The oversaturated condition is typically applied to signalized intersections but its application to roundabouts requires further exploration for future management of similar transportation systems. The accompanying Quick Estimation and Simulation model (QESM) spreadsheet was calibrated using an iterative process to optimize its level of adaptability to various scenarios. This microsimulation modeling program can be used to predict the outcome of possible roadway improvements aimed at decreasing traffic congestion. The information provided in this paper helps users understand traffic system problems, as a primary to visual simulation programs.
ContributorsBrunetti, Isabel (Co-author) / Tran, Adam (Co-author) / Zhou, Xuesong (Thesis director) / Carreon, Adam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
DescriptionThis document explains the design of a traffic simulator based on an integral-based state machine. This simulator is different from existing traffic simulators because it is driven by a flexible model that supports many different light configurations and has a user-friendly interface.
ContributorsSapp, Curtis Mark (Author) / Gaffar, Ashraf (Thesis director) / Gonzalez Sanchez, Javier (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05