Matching Items (2)
Filtering by

Clear all filters

152787-Thumbnail Image.png
Description

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface has a profound impact on the intensity of the retroreflected light. In order to gain insight into how the glass beads provide retroreflection, an experiment was carried out to produce paint stripes with glass beads and measure the retroreflection. Samples were created at various application rates and embedment depths, in an attempt to verify the optimal embedment and observe the effect of application rate on retroreflection. The experiment was conducted using large, airport quality beads and small, road quality beads. Image analysis was used to calculate the degree to which beads were embedded and in an attempt to quantify bead distribution on the stripe surface. The results from the large beads showed that retroreflection was maximized when the beads were embedded approximately seventy percent by bead volume. The results also showed that as the application rate increased, the retroreflection increased, up to a point and then decreased. A model was developed to estimate the retroreflectivity given the amount of beads, bead spacing, and distribution of bead embedment. Results from the small beads were less conclusive, but did demonstrate that the larger beads are better at providing retroreflection. Avenues for future work in this area were identified as the experiment was conducted.

ContributorsStevens, Ryan David (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2014
157491-Thumbnail Image.png
Description
Researchers and practitioners have widely studied road network traffic data in different areas such as urban planning, traffic prediction and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must

Researchers and practitioners have widely studied road network traffic data in different areas such as urban planning, traffic prediction and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install Global Positioning System(GPS) receivers and administrators must continuously monitor these devices. There have been some urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) Scalability: most of them only offer single-machine solution which is not adequate to produce large-scale data. Some simulators can generate traffic in parallel but do not well balance the load among machines in a cluster. (2) Granularity: many simulators do not consider microscopic traffic situations including traffic lights, lane changing, car following. This paper proposed GeoSparkSim, a scalable traffic simulator which extends Apache Spark to generate large-scale road network traffic datasets with microscopic traffic simulation. The proposed system seamlessly integrates with a Spark-based spatial data management system, GeoSpark, to deliver a holistic approach that allows data scientists to simulate, analyze and visualize large-scale urban traffic data. To implement microscopic traffic models, GeoSparkSim employs a simulation-aware vehicle partitioning method to partition vehicles among different machines such that each machine has a balanced workload. The experimental analysis shows that GeoSparkSim can simulate the movements of 200 thousand cars over an extensive road network (250 thousand road junctions and 300 thousand road segments).
ContributorsFu, Zishan (Author) / Sarwat, Mohamed (Thesis advisor) / Pedrielli, Giulia (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019