Matching Items (5)
Filtering by

Clear all filters

136012-Thumbnail Image.png
Description
Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective

Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective in the treatment of multiple types of cancer, including lung cancer. However, the disadvantages of using Bex include increased instances of hypothyroidism and excessive concentrations of blood triglycerides. If an analog of Bex can be developed which retains high affinity RXR binding similar to the 9-cis retinoic acid while exhibiting less interference for heterodimerization pathways, it would be of great clinical significance in improving the quality of life for patients with CTCL. This thesis will detail the biological profiling of additional novel (Generation Two) analogs, which are currently in submission for publication, as well as that of Generation Three analogs. The results from these studies reveal that specific alterations in the core structure of the Bex "parent" compound structure can have dramatic effects in modifying the biological activity of RXR agonists.
ContributorsYang, Joanna (Author) / Jurutka, Peter (Thesis director) / Wagner, Carl (Committee member) / Hibler, Elizabeth (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
134705-Thumbnail Image.png
Description
Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by acting as an estrogen receptor alpha (ERα) signaling antagonist, and

Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by acting as an estrogen receptor alpha (ERα) signaling antagonist, and can therefore be used to treat ERα-positive cancers, such as breast cancer. Using dual luciferase reporter assays, real-time qRT-PCR, and metabolic proliferation assays, the anti-estrogenic properties of Bex were ascertained. However, since Bex produces numerous contraindications, select novel RXR drug analogs were also evaluated. Results revealed that, in luciferase assays, Bex could significantly (P < 0.01) inhibit the transcriptional activity of ERα, so much so that it rivaled ER pan-antagonist ZK164015 in potency. Bex was also able to suppress the proliferation of two breast cancer cell models, MCF-7 and T-47D, and downregulate the expression of an estrogen receptor target gene (A-myb), which is responsible for cell proliferation. In addition, novel analogs A30, A33, A35, and A38 were evaluated as being more potent at inhibiting ERE-mediated transcription than Bex at lower concentrations. Analogs A34 and A35 were able to suppress MCF-7 cell proliferation to a degree comparable to that of Bex. Inhibition of T-47D cell proliferation, by contrast, was best achieved by analogs A34 and A36. For those with ERα – positive breast cancer who are refractory to current chemotherapeutics used to treat breast cancer, Bex and its analogs may prove to be useful alternative options.
ContributorsBains, Supreet (Author) / Jurutka, Peter (Thesis director) / Hackney Price, Jennifer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

The ever-increasing importance of cancer and neurodegenerative diseases continues to grow as populations across the world are affected by death and aging. The vitamin A (RXR) and vitamin D (VDR) receptor pathways offer promising potential to aid in treatment of cancer and Alzheimer’s disease. This thesis discusses the potential application

The ever-increasing importance of cancer and neurodegenerative diseases continues to grow as populations across the world are affected by death and aging. The vitamin A (RXR) and vitamin D (VDR) receptor pathways offer promising potential to aid in treatment of cancer and Alzheimer’s disease. This thesis discusses the potential application of novel analogs of Bexarotene (RXR agonist), MeTC7 (a new potent VDR antagonist), and vitamin D as possible therapeutics for cancer and Alzheimer’s disease.

ContributorsHong, Jennifer (Author) / Jurutka, Peter (Thesis director) / Wagner, Carl (Committee member) / Marshall, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
189277-Thumbnail Image.png
Description
Bexarotene is a Food and Drug administration (FDA)-approved therapeutic used in the treatment of cutaneous T-cell lymphoma (CTCL). However, bexarotene therapy causes significant side effects like hyperlipidemia and hypothyroidism due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. More

Bexarotene is a Food and Drug administration (FDA)-approved therapeutic used in the treatment of cutaneous T-cell lymphoma (CTCL). However, bexarotene therapy causes significant side effects like hyperlipidemia and hypothyroidism due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. More recently bexarotene has shown promise to reverse neurodegeneration, improve cognition and decrease levels of amyloid- β in transgenic mice expressing familial Alzheimer’s disease (AD) mutations. Bexarotene is a high affinity ligand for the retinoid X receptor (RXR) that heterodimerizes with the liver- X- receptors (LXR) and with peroxisome proliferator-activated receptor-gamma (PPARϒ) to control cholesterol efflux, inflammation, and transcriptionally upregulates the production of apolipoprotein (ApoE) in the brain. Enhanced ApoE expression may promote clearance of soluble Aβ peptides from the brain and reduce Aβ plaques, thus resolving both amyloid pathology and cognitive deficits. The present study assessed the potential of bexarotene and a group of 62 novel rexinoids to bind and activate RXR using a series of biological assays and screening methods, including: 1) a mammalian two-hybrid system (M2H) and an 2) Retinoid X Receptor response element (RXRE)-mediated reporter assays in cultured human cells. Moreover, Liver X Receptor response element (LXRE)-mediated luciferase assays were performed to analyze the ability of the novel analogs to activate LXRE - directed transcription, and to induce ApoE messenger ribonucleic acid (mRNA) in U87 glial cells. Furthermore, the most potent analogs were analyzed via quantitative polymerase chain reaction (qPCR) to determine efficacy in modulating expression of two critical tumor suppressor genes, activating transcription factor 3 (ATF3) and early growth response 3 (EGR3). Results from these multiple assays indicate that the panel of RXR ligands contains compounds with a range of activities, with some analogs capable of binding to RXR with higher affinity than others, and in some cases upregulating ApoE expression to a greater extent than bexarotene. The data suggests that minor modifications to the bexarotene core chemical structure may yield novel analogs possessing an equal or greater capacity to activate RXR and may be useful as therapeutic agents against CTCL and Alzheimer’s disease.
ContributorsReshi, Sabeeha Mushtaq (Author) / Jurutka, Peter (Thesis advisor) / Wagner, Carl (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2023
131432-Thumbnail Image.png
Description
Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital functions in arthropods. Here, we examined the effects of full (13.3 IU/mL) and half dose (6.65 IU/mL) vitamin D3 on

Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital functions in arthropods. Here, we examined the effects of full (13.3 IU/mL) and half dose (6.65 IU/mL) vitamin D3 on the growth and lifespan of Drosophila melanogaster. Vitamin B12 is another micronutrient that shows decreases absorption in elderly patients and might be linked to symptoms associated with aging rather than lifespan, but again, the effects of vitamin B12 supplementation in arthropods is poorly characterized. Results showed that both full and half doses of vitamin D3 and B12 do not significantly alter the timing of pupariation or adult eclosion. Similarly, the mortality rate of adult D. melanogaster exposed to vitamin B12 or higher doses of vitamin D3 was not significantly decreased or increased. However, a low dose of vitamin D3 did significantly lower the mortality rate of D. melanogaster. The genetic composition of Drosophila for vitamin B12 and D metabolism showed similarities in humans. However, there are no biological evidences if these genes are functional thus, this may explain the results of this study.
ContributorsRebonza, Edzel May Suico (Author) / Hackney Price, Jennifer (Thesis director) / Jurutka, Peter (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05