Matching Items (26)
Filtering by

Clear all filters

151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
151096-Thumbnail Image.png
Description
Plasmon resonance in nanoscale metallic structures has shown its ability to concentrate electromagnetic energy into sub-wavelength volumes. Metal nanostructures exhibit a high extinction coefficient in the visible and near infrared spectrum due to their large absorption and scattering cross sections corresponding to their surface plasmon resonance. Hence, they can serve

Plasmon resonance in nanoscale metallic structures has shown its ability to concentrate electromagnetic energy into sub-wavelength volumes. Metal nanostructures exhibit a high extinction coefficient in the visible and near infrared spectrum due to their large absorption and scattering cross sections corresponding to their surface plasmon resonance. Hence, they can serve as an attractive candidate for solar energy conversion. Recent papers have showed that dielectric core/metallic shell nanoparticles yielded a plasmon resonance wavelength tunable from visible to infrared by changing the ratio of core radius to the total radius. Therefore it is interesting to develop a dispersion of core-shell multifunctional nanoparticles capable of dynamically changing their volume ratio and thus their spectral radiative properties. Nanoparticle suspensions (nanofluids) are known to offer a variety of benefits for thermal transport and energy conversion. Nanofluids have been proven to increase the efficiency of the photo-thermal energy conversion process in direct solar absorption collectors (DAC). Combining these two cutting-edge technologies enables the use of core-shell nanoparticles to control the spectral and radiative properties of plasmonic nanofluids in order to efficiently harvest and convert solar energy. Plasmonic nanofluids that have strong energy concentrating capacity and spectral selectivity can be used in many high-temperature energy systems where radiative heat transport is essential. In this thesis,the surface plasmon resonance effect and the wavelength tuning ranges for different metallic shell nanoparticles are investigated, the solar-weighted efficiencies of corresponding core-shell nanoparticle suspensions are explored, and a quantitative study of core-shell nanoparticle suspensions in a DAC system is provided. Using core-shell nanoparticle dispersions, it is possible to create efficient spectral solar absorption fluids and design materials for applications which require variable spectral absorption or scattering.
ContributorsLv, Wei (Author) / Phelan, Patrick E (Thesis advisor) / Dai, Lenore (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2012
149785-Thumbnail Image.png
Description
Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This

Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
157389-Thumbnail Image.png
Description
In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat

In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat exchanger. Heat exchangers are an essential commodity to any industry and their efficiency can play an important role in making industries energy efficient and reduce the energy losses in the devices, in turn decreasing energy inputs to run the industry.

One of the ways in which we can improve the efficiency of heat exchangers is by applying ultrasonic energy to a heat exchanger. This research explores the possibility of introducing the external input of ultrasonic energy to increase the efficiency of the heat exchanger. This increase in efficiency can be estimated by calculating the parameters important for the characterization of a heat exchanger, which are effectiveness (ε) and overall heat transfer coefficient (U). These parameters are calculated for both the non-ultrasound and ultrasound conditions in the heat exchanger.

This a preliminary study of ultrasound and its effect on a conventional shell-and-coil heat exchanger. From the data obtained it can be inferred that the increase in effectiveness and overall heat transfer coefficient upon the application of ultrasound is 1% and 6.22% respectively.
ContributorsAnnam, Roshan Sameer (Author) / Phelan, Patrick (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2019
157189-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to significant energy savings on a global scale.

This research utilizes infrared imaging to investigate the effects of fill level and rotation rate on the particle bed hydrodynamics and the average wall-particle heat transfer coefficient. 3 mm silica beads and a stainless steel rotary drum with a diameter of 6 in and a length of 3 in were used at fill levels of 10 %, 17.5 %, and 25 %, and rotation rates of 2 rpm, 6 rpm, and 10 rpm. Two full factorial designs of experiments were completed to understand the effects of these factors in the presence of conduction only (Case 1) and conduction with forced convection (Case 2). Particle-particle friction caused the particle bed to stagnate at elevated temperatures in Case 1, while the inlet air velocity in Case 2 dominated the particle friction effects to maintain the flow profile. The maximum heat transfer coefficient was achieved at a high rotation rate and low fill level in Case 1, and at a high rotation rate and high fill level in Case 2. Heat losses from the system were dominated by natural convection between the hot air in the drum and the external surroundings.
ContributorsBoepple, Brandon (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
157301-Thumbnail Image.png
Description
This investigation focuses on the development of uncertainty modeling methods applicable to both the structural and thermal models of heated structures as part of an effort to enable the design under uncertainty of hypersonic vehicles. The maximum entropy-based nonparametric stochastic modeling approach is used within the context of coupled structural-thermal

This investigation focuses on the development of uncertainty modeling methods applicable to both the structural and thermal models of heated structures as part of an effort to enable the design under uncertainty of hypersonic vehicles. The maximum entropy-based nonparametric stochastic modeling approach is used within the context of coupled structural-thermal Reduced Order Models (ROMs). Not only does this strategy allow for a computationally efficient generation of samples of the structural and thermal responses but the maximum entropy approach allows to introduce both aleatoric and some epistemic uncertainty into the system.

While the nonparametric approach has a long history of applications to structural models, the present investigation was the first one to consider it for the heat conduction problem. In this process, it was recognized that the nonparametric approach had to be modified to maintain the localization of the temperature near the heat source, which was successfully achieved.

The introduction of uncertainty in coupled structural-thermal ROMs of heated structures was addressed next. It was first recognized that the structural stiffness coefficients (linear, quadratic, and cubic) and the parameters quantifying the effects of the temperature distribution on the structural response can be regrouped into a matrix that is symmetric and positive definite. The nonparametric approach was then applied to this matrix allowing the assessment of the effects of uncertainty on the resulting temperature distributions and structural response.

The third part of this document focuses on introducing uncertainty using the Maximum Entropy Method at the level of finite element by randomizing elemental matrices, for instance, elemental stiffness, mass and conductance matrices. This approach brings some epistemic uncertainty not present in the parametric approach (e.g., by randomizing the elasticity tensor) while retaining more local character than the operation in ROM level.

The last part of this document focuses on the development of “reduced ROMs” (RROMs) which are reduced order models with small bases constructed in a data-driven process from a “full” ROM with a much larger basis. The development of the RROM methodology is motivated by the desire to optimally reduce the computational cost especially in multi-physics situations where a lack of prior understanding/knowledge of the solution typically leads to the selection of ROM bases that are excessively broad to ensure the necessary accuracy in representing the response. It is additionally emphasized that the ROM reduction process can be carried out adaptively, i.e., differently over different ranges of loading conditions.
ContributorsSong, Pengchao (Author) / Mignolet, Marc P (Thesis advisor) / Smarslok, Benjamin (Committee member) / Chattopadhyay, Aditi (Committee member) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2019
133653-Thumbnail Image.png
Description
In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A

In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A steel rotary drum was set up to be headed by three external heat guns, simulating the conditions under which standard rotary drums are operated. By measuring the bed temperature at steady state, and recording the combination of factors in each run, a regression analysis was run to determine the factor's effects. Fill level was seen to have a small positive effect, rotation rate was seen to have a small negative effect, and the interaction of the two was shown to have a large positive effect. This led the team to conclude that the flow profile of the bed may be the most important factor in heat transfer, and that further research should be done to isolate and study the effect of the flow profile.
ContributorsBeairsto, Cole James (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134643-Thumbnail Image.png
Description
In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics

In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics while also being thermally conductive and cooling the CPU. A simple comparison of a flat plate immersed in air versus mineral oil is considered using analytical natural convection correlations. The result of this comparison indicates that the plate cooled by natural convection in air would operate at 98.41[°C] while the plate cooled by mineral oil would operate at 32.20 [°C]. Next, CFD in ANSYS Fluent was used to conduct simulation with forced convection representing a CPU fan driving fluid flow to cool the CPU. A comparison is made between cooling done with air and mineral oil. The results of the CFD simulation results indicate that using mineral oil as a substitute to air as the cooling fluid reduced the CPU operating temperature by sixty degrees Celsius. The use of mineral oil as a cooling fluid for a consumer computer has valid thermal benefits, but the practical challenges of the method will likely prevent widespread adoption.
ContributorsTichacek, Louis Joseph (Author) / Huang, Huei-Ping (Thesis director) / Herrmann, Marcus (Committee member) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134366-Thumbnail Image.png
Description
This paper presents an experimental investigation into the effects of altering electrode surface area roughness on thermogalvanic cell performance. A temperature difference between two electrodes was induced and brought to steady state to achieve a difference of around 50 °C, which was maintained with a DC power generated hot wire

This paper presents an experimental investigation into the effects of altering electrode surface area roughness on thermogalvanic cell performance. A temperature difference between two electrodes was induced and brought to steady state to achieve a difference of around 50 °C, which was maintained with a DC power generated hot wire and a pumped ice bath. The open-circuit voltage values at steady-state were measured by a programed multimeter and the temperatures were measured by a series of type K thermocouples. Electrode surface area roughness was altered using different grit values of sandpaper and measuring the values using a Zescope Optical Profilometer. Once three different surface area average values were achieved, 6 trials were performed with 2 trials per roughness value. The results were tabulated in Section 4 of this report.
It was predicted that increasing the surface area roughness would increase the number of electrons present in the reduction oxidation reaction and decrease the activation resistance of the thermogalvanic system. Decreasing the activation resistance, a component of total internal resistance, would therefore increase the power output of the cell by a small magnitude. The results showed that changing the surface area roughness of the Copper electrodes evidently had no effect on the outputs of the cell system. Additionally, the Seebeck coefficient was also unaffected by the presence of increased surface area roughness.
The work presented in the following paper is part of a continuing effort to better understand the performance of thermogalvanic cells and their heat to electrical energy transfer properties.
ContributorsLopez, Maggie Marie (Author) / Phelan, Patrick (Thesis director) / Miner, Mark (Committee member) / School of Sustainability (Contributor) / School of Music (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05