Matching Items (2)
Filtering by

Clear all filters

133653-Thumbnail Image.png
Description
In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A

In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A steel rotary drum was set up to be headed by three external heat guns, simulating the conditions under which standard rotary drums are operated. By measuring the bed temperature at steady state, and recording the combination of factors in each run, a regression analysis was run to determine the factor's effects. Fill level was seen to have a small positive effect, rotation rate was seen to have a small negative effect, and the interaction of the two was shown to have a large positive effect. This led the team to conclude that the flow profile of the bed may be the most important factor in heat transfer, and that further research should be done to isolate and study the effect of the flow profile.
ContributorsBeairsto, Cole James (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133976-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 mm silica beads and a stainless steel rotary drum were used at fill levels ranging from 10 \u2014 25 % and rotation rates from 2 \u2014 10 rpm. Four heat guns were used to heat the system via conduction and convection, and an infrared camera was used to record temperature data. A three-level, two-factor, full-factorial design of experiments was employed to determine the effects of each factor on the steady-state average bed temperature. Low fill level and high rotation rate resulted in higher steady-state average bed temperatures. A quantitative model showed that rotation rate had a larger impact on the steady-state bed temperature than fill level.
ContributorsBoepple, Brandon Richard (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05