Matching Items (13)
Filtering by

Clear all filters

157189-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to significant energy savings on a global scale.

This research utilizes infrared imaging to investigate the effects of fill level and rotation rate on the particle bed hydrodynamics and the average wall-particle heat transfer coefficient. 3 mm silica beads and a stainless steel rotary drum with a diameter of 6 in and a length of 3 in were used at fill levels of 10 %, 17.5 %, and 25 %, and rotation rates of 2 rpm, 6 rpm, and 10 rpm. Two full factorial designs of experiments were completed to understand the effects of these factors in the presence of conduction only (Case 1) and conduction with forced convection (Case 2). Particle-particle friction caused the particle bed to stagnate at elevated temperatures in Case 1, while the inlet air velocity in Case 2 dominated the particle friction effects to maintain the flow profile. The maximum heat transfer coefficient was achieved at a high rotation rate and low fill level in Case 1, and at a high rotation rate and high fill level in Case 2. Heat losses from the system were dominated by natural convection between the hot air in the drum and the external surroundings.
ContributorsBoepple, Brandon (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
134643-Thumbnail Image.png
Description
In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics

In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics while also being thermally conductive and cooling the CPU. A simple comparison of a flat plate immersed in air versus mineral oil is considered using analytical natural convection correlations. The result of this comparison indicates that the plate cooled by natural convection in air would operate at 98.41[°C] while the plate cooled by mineral oil would operate at 32.20 [°C]. Next, CFD in ANSYS Fluent was used to conduct simulation with forced convection representing a CPU fan driving fluid flow to cool the CPU. A comparison is made between cooling done with air and mineral oil. The results of the CFD simulation results indicate that using mineral oil as a substitute to air as the cooling fluid reduced the CPU operating temperature by sixty degrees Celsius. The use of mineral oil as a cooling fluid for a consumer computer has valid thermal benefits, but the practical challenges of the method will likely prevent widespread adoption.
ContributorsTichacek, Louis Joseph (Author) / Huang, Huei-Ping (Thesis director) / Herrmann, Marcus (Committee member) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134366-Thumbnail Image.png
Description
This paper presents an experimental investigation into the effects of altering electrode surface area roughness on thermogalvanic cell performance. A temperature difference between two electrodes was induced and brought to steady state to achieve a difference of around 50 °C, which was maintained with a DC power generated hot wire

This paper presents an experimental investigation into the effects of altering electrode surface area roughness on thermogalvanic cell performance. A temperature difference between two electrodes was induced and brought to steady state to achieve a difference of around 50 °C, which was maintained with a DC power generated hot wire and a pumped ice bath. The open-circuit voltage values at steady-state were measured by a programed multimeter and the temperatures were measured by a series of type K thermocouples. Electrode surface area roughness was altered using different grit values of sandpaper and measuring the values using a Zescope Optical Profilometer. Once three different surface area average values were achieved, 6 trials were performed with 2 trials per roughness value. The results were tabulated in Section 4 of this report.
It was predicted that increasing the surface area roughness would increase the number of electrons present in the reduction oxidation reaction and decrease the activation resistance of the thermogalvanic system. Decreasing the activation resistance, a component of total internal resistance, would therefore increase the power output of the cell by a small magnitude. The results showed that changing the surface area roughness of the Copper electrodes evidently had no effect on the outputs of the cell system. Additionally, the Seebeck coefficient was also unaffected by the presence of increased surface area roughness.
The work presented in the following paper is part of a continuing effort to better understand the performance of thermogalvanic cells and their heat to electrical energy transfer properties.
ContributorsLopez, Maggie Marie (Author) / Phelan, Patrick (Thesis director) / Miner, Mark (Committee member) / School of Sustainability (Contributor) / School of Music (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
148412-Thumbnail Image.png
Description

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal homeostasis behavior using the two developments. Using the measurement platform, it was shown that there was no thermal homeostatic behavior demonstrated by the sample at steady state temperatures. Theoretical calculations show other ways to demonstrate the cooling homeostasis behavior through time-varying heat inputs. Factors within the system such as heat loss and thermal mass contributed to an inhibited sample performance in the platform. Future work will have to be conducted, not only to verify the findings of the initial experiments but also to improve the measurement platform and the theoretical model.

ContributorsBoman, Neal D (Author) / Wang, Liping (Thesis director) / Taylor, Syndey (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148451-Thumbnail Image.png
Description

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU;

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU; however, the design of the rotary drum used in these studies is restrictive and experiments using radiation heat transfer have not been possible.<br/><br/>This study focuses on recounting the steps taken to upgrade the rotary drum setup and detailing the recommended procedure for experimental tests using radiant heat transfer upon completed construction of the new setup. To develop an improved rotary drum setup, flaws in the original design were analyzed and resolved. This process resulted in a redesigned drum heating system, an altered thinner drum, and a larger drum box. The recommended procedure for radiant heat transfer tests is focused on determining how particle size, drum fill level, and drum rotation rate impact the radiant heat transfer rate.

ContributorsMiller, Erik R (Author) / Emady, Heather (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147589-Thumbnail Image.png
Description

The purpose of this project is to assess how well today’s youth is able to learn new skills<br/>in the realm of engineering through online video-conferencing resources. Each semester of this<br/>last year, a class of students in both 3rd and 6th grade learned about computer-aided design (CAD)<br/>and 3D printing through their

The purpose of this project is to assess how well today’s youth is able to learn new skills<br/>in the realm of engineering through online video-conferencing resources. Each semester of this<br/>last year, a class of students in both 3rd and 6th grade learned about computer-aided design (CAD)<br/>and 3D printing through their laptops at school. This was done by conducting online lessons of<br/>TinkerCAD via Zoom and Google Meet. TinkerCAD is a simple website that incorporates easy-to-learn skills and gives students an introduction to some of the basic operations that are used in<br/>everyday CAD endeavors. In each lesson, the students would learn new skills by creating<br/>increasingly difficult objects that would test both their ability to learn new skills and their overall<br/>enjoyment with the subject matter. The findings of this project reflect that students are able to<br/>quickly learn and retain new information relating to CAD. The group of 6th graders was able to<br/>learn much faster, which was expected, but the class of 3rd graders still maintained the<br/>knowledge gained from previous lessons and were able to construct increasingly complicated<br/>objects without much struggle. Overall, the students in both classes enjoyed the lessons and did<br/>not find them too difficult, despite the online environment that we were required to use. Some<br/>students found the material more interesting than others, but in general, the students found it<br/>enjoyable to learn about a new skill that has significant real-world applications

ContributorsWerner, Matthew (Author) / Song, Kenan (Thesis director) / Lin, Elva (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper explores to mitigate the issue of Formula SAE brakes vaporizing by creating a computational model to determine when the fluid may boil given a velocity profile and brake geometry. The paper explores various parameters and assumptions and how they may lead to error determining when the brake fluid

This paper explores to mitigate the issue of Formula SAE brakes vaporizing by creating a computational model to determine when the fluid may boil given a velocity profile and brake geometry. The paper explores various parameters and assumptions and how they may lead to error determining when the brake fluid will vaporize. Common assumptions such as a constant convection coefficient are questioned throughout the paper and compared to methods requiring higher computational power. Throughout this model, a significant dependence on the heat partition factor is found on the final steady state temperature of the brake fluid is found, and a sensitivity analysis is performed to determine the effect of its variation.

ContributorsWesterhoff, Andrew (Author) / Kwon, Beomjin (Thesis director) / Milcarek, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
158537-Thumbnail Image.png
Description
The current research is based on the principles of three-dimensional discrete element method (3D – DEM) through simulations, by using heat transfer models in EDEM, to investigate the effects of fill level, rotation rate and particle size on the steady-state conduction heat transfer in rotary drums. The high heat and

The current research is based on the principles of three-dimensional discrete element method (3D – DEM) through simulations, by using heat transfer models in EDEM, to investigate the effects of fill level, rotation rate and particle size on the steady-state conduction heat transfer in rotary drums. The high heat and mass transfer rates obtained through rotary drums make them very useful for powder mixing and heating processes in metallurgical, cement, mining, pharmaceutical, detergent and other particulate processing applications. However, these complex processes are difficult to model and operate since the particles can have a wide range of properties, and there is currently no way to predict the optimal operating conditions for a given material.

Steady-state heat transfer by conduction forms the basis for understanding other steady-state and unsteady-state heat transfer in a rotary drum – conduction, convection and radiation. Statistical analysis is carried out to determine the effects of these process parameters and find optimal operating conditions, which will thereby improve the heat transfer efficiency in rotary drums. A stainless-steel drum with a diameter of 6 inches and a length of 3 inches was modeled in EDEM with silica beads of sizes 2 mm, 3 mm and 4 mm at fill levels of 10%, 17.5% and 25%, and at rotation rates of 2 rpm, 5 rpm and 10 rpm. It was found that the heating uniformity increased with decreasing particle size, decreasing fill level and increasing rotation rate. This research is the first step towards studying the other heat transfer modes and various other process parameters. Better understanding of the various heat transfer modes, when used in combination for heating the particles, will be beneficial in improving the operating efficiency, reducing material costs and leading to significant energy conservation on a global scale.
ContributorsBheda, Bhaumik (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2020
161085-Thumbnail Image.png
Description

Thermophotovoltaic energy conversion is seen as a viable option for efficiently converting heat to electricity. There are three key components to a thermophotovoltaic (TPV) system: a heat source, a heat emitter and a photovoltaic (PV) cell. A heat source heats up the emitter which causes the emitter to release thermal

Thermophotovoltaic energy conversion is seen as a viable option for efficiently converting heat to electricity. There are three key components to a thermophotovoltaic (TPV) system: a heat source, a heat emitter and a photovoltaic (PV) cell. A heat source heats up the emitter which causes the emitter to release thermal radiation. The photons are absorbed by a PV cell when they are acting above the bandgap energy. The PV cell then generates electricity from this thermal radiation. In theory, efficiency of a TPV system can be well above 50%. In order for TPV to reach large-scale adaptation, an efficiency at or above 20% is needed. In this project, a high-temperature heater capable of reaching 1000K was developed. The heater involved a copper block machined to hold two cartridge heaters, as well as two thermocouples. It has an accompanying copper lid that can be screwed tight to the main block, with an emitter in between. There is an aperture to allow radiation through the casing towards the PV cell. Preliminary thermal analysis showed that the heater provides uniform temperature distribution across the emitter, which is necessary for proper radiation. A mounting system was also designed to implement the heater into the overall TPV system. Current work is being done to lower the radiation loss from the heater and mounting system, as well as implementation of all auxiliary components to begin testing. The maximum temperature of the heater, radiation heat flux received by the cell, and overall power output and efficiency of the system will be tested.

ContributorsDeffigos, Nikolas (Author) / Wang, Liping (Thesis director) / Milcarek, Ryan (Committee member) / Ni, Qing (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2021-12
132086-Thumbnail Image.png
Description
This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like paste or a soft polymer pad that is placed between two solids to increase the heat transfer rate. Solids in

This thesis project explains what thermal interface materials (TIMs) are, what they are used for, and how to measure their properties. Thermal interface materials are typically either a grease like paste or a soft polymer pad that is placed between two solids to increase the heat transfer rate. Solids in contact with each other experience a very large thermal contact resistance, this creates a thermal bottleneck which severely decreases the heat transfer from one solid to another. To solve this, particles with a high thermal conductivity are used as filler material in either a grease or polymer. A common application for TIMs is in computer components, where a TIM is used to remove the heat generated from computer chips. These materials allow for computer chips to run faster without overheating or throttling performance. However, further improvements to TIMs are still desired, which are needed for more powerful computer chips. In this work, a Stepped Bar Apparatus (SBA) is used to evaluate the thermal properties of TIMs. The SBA is based on Fourier’s Law of one-dimensional heat transfer. This work explains the fundamentals of the SBA measurement, and develops a reliable way to confirm the SBA’s measurement consistency through the use of reference samples. Furthermore, this work evaluates the effects of volume fraction and magnetic alignment on the performance of nickel flakes mixed into a polymer to create a soft TIM composite pad. Magnets are used to align the nickel flakes into a column like arrangement in the direction that heat will travel. Magnetic alignment increases the thermal conductivity of the composite pads, and has peak performance at low compression.
ContributorsHart, Matthew (Author) / Rykaczewski, Konrad (Thesis director) / Wang, Robert (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12