Matching Items (7)
Filtering by

Clear all filters

152460-Thumbnail Image.png
Description
New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design goals and to operate consistently for many years deployed in

New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design goals and to operate consistently for many years deployed in the field. An on-going concern for engineers is the consequences of ionizing radiation exposure, specifically total dose effects. For many of the different applications, there is a likelihood of exposure to radiation, which can result in device degradation and potentially failure. While the total dose effects and the resulting degradation are a well-studied field and methodologies to help mitigate degradation have been developed, there is still a need for simulation techniques to help designers understand total dose effects within their design. To that end, the work presented here details simulation techniques to analyze as well as predict the total dose response of a circuit. In this dissertation the total dose effects are broken into two sub-categories, intra-device and inter-device effects in CMOS technology. Intra-device effects degrade the performance of both n-channel and p-channel transistors, while inter-device effects result in loss of device isolation. In this work, multiple case studies are presented for which total dose degradation is of concern. Through the simulation techniques, the individual device and circuit responses are modeled post-irradiation. The use of these simulation techniques by circuit designers allow predictive simulation of total dose effects, allowing focused design changes to be implemented to increase radiation tolerance of high reliability electronics.
ContributorsSchlenvogt, Garrett (Author) / Barnaby, Hugh (Thesis advisor) / Goodnick, Stephen (Committee member) / Vasileska, Dragica (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
152978-Thumbnail Image.png
Description
Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization.

To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.

The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
ContributorsRajabi, Saba (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
153227-Thumbnail Image.png
Description
Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of

Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of NBTI effects at circuit level. The model mimics the effects of degradation caused by the defects.

The NBTI model developed in this work is validated and sanity checked by using the simulation data from silvaco and gives excellent results. Furthermore the susceptibility of CMOS circuits such as the CMOS inverter, and a ring oscillator to NBTI is investigated. The results show that the oscillation frequency of a ring oscillator decreases and the SET pulse broadens with the NBTI.
ContributorsPadala, Sudheer (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
150106-Thumbnail Image.png
Description
Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for

Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for each receiver. High speed digital communication require high throughput with enough sensitivity to keep the bit error rate low. Instrumentation receivers have a lower bandwidth, but higher gain and sensitivity requirements. In this thesis an optical receiver for use in instrumentation in presented. It is an entirely monolithic design with the photodiodes on the same substrate as the CMOS circuitry. This allows for it to be built into a focal-plane array, but it places some restriction on the area. It is also designed for in-situ testing and must be able to cancel any low frequency noise caused by ambient light. The area restrictions prohibit the use of a DC blocking capacitor to reject the low frequency noise. In place a servo loop was wrapped around the system to reject any DC offset. A modified Cherry-Hooper architecture was used for the transimpedance amplifier. This provides the flexibility to create an amplifier with high gain and wide bandwidth that is independent of the input capacitance. The downside is the increased complexity of the design makes stability paramount to the design. Another drawback is the high noise associated with low input impedance that decouples the input capacitance from the bandwidth. This problem is compounded by the servo loop feed which leaves the output noise of some amplifiers directly referred to the input. An in depth analysis of each circuit block's noise contribution is presented.
ContributorsLaFevre, Kyle (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Vermeire, Bert (Committee member) / Arizona State University (Publisher)
Created2011
150529-Thumbnail Image.png
Description
The non-quasi-static (NQS) description of device behavior is useful in fast switching and high frequency circuit applications. Hence, it is necessary to develop a fast and accurate compact NQS model for both large-signal and small-signal simulations. A new relaxation-time-approximation based NQS MOSFET model, consistent between transient and small-signal simulations, has

The non-quasi-static (NQS) description of device behavior is useful in fast switching and high frequency circuit applications. Hence, it is necessary to develop a fast and accurate compact NQS model for both large-signal and small-signal simulations. A new relaxation-time-approximation based NQS MOSFET model, consistent between transient and small-signal simulations, has been developed for surface-potential-based MOSFET compact models. The new model is valid for all regions of operation and is compatible with, and at low frequencies recovers, the quasi-static (QS) description of the MOSFET. The model is implemented in two widely used circuit simulators and tested for speed and convergence. It is verified by comparison with technology computer aided design (TCAD) simulations and experimental data, and by application of a recently developed benchmark test for NQS MOSFET models. In addition, a new and simple technique to characterize NQS and gate resistance, Rgate, MOS model parameters from measured data has been presented. In the process of experimental model verification, the effects of bulk resistance on MOSFET characteristics is investigated both theoretically and experimentally to separate it from the NQS effects.
ContributorsZhu, Zeqin (Author) / Gildenblat, Gennady (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Barnaby, Hugh (Committee member) / Mcandrew, Colin C (Committee member) / Arizona State University (Publisher)
Created2012
150776-Thumbnail Image.png
Description
The front end of almost all ADCs consists of a Sample and Hold Circuit in order to make sure a constant analog value is digitized at the end of ADC. The design of Track and Hold Circuit (THA) mainly focuses on following parameters: Input frequency, Sampling frequency, dynamic Range, hold

The front end of almost all ADCs consists of a Sample and Hold Circuit in order to make sure a constant analog value is digitized at the end of ADC. The design of Track and Hold Circuit (THA) mainly focuses on following parameters: Input frequency, Sampling frequency, dynamic Range, hold pedestal, feed through error. This thesis will discuss the importance of these parameters of a THA to the ADCs and commonly used architectures of THA. A new architecture with SiGe HBT transistors in BiCMOS 130 nm technology is presented here. The proposed topology without complicated circuitry achieves high Spurious Free Dynamic Range(SFDR) and Total Harmonic Distortion (THD).These are important figure of merits for any THA which gives a measure of non-linearity of the circuit. The proposed topology is implemented in IBM8HP 130 nm BiCMOS process combines typical emitter follower switch in bipolar THAs and output steering technique proposed in the previous work. With these techniques and the cascode transistor in the input which is used to isolate the switch from the input during the hold mode, better results have been achieved. The THA is designed to work with maximum input frequency of 250 MHz at sampling frequency of 500 MHz with input currents not more than 5mA achieving an SFDR of 78.49 dB. Simulation and results are presented, illustrating the advantages and trade-offs of the proposed topology.
ContributorsRao, Nishita Ramakrishna (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
171391-Thumbnail Image.png
Description
Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and lengthy process. As such methods that can help predict a COTS

Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and lengthy process. As such methods that can help predict a COTS part’s performance help alleviate these downsides. A modeling software for predicting total ionizing dose (TID), enhanced low dose rate sensitivity (ELDRS), and hydrogen gas on bipolar parts is introduced and expanded upon. The model is then developed in several key ways that expand it’s features and usability in this field. A physics based methodology of simulating interface traps (NIT) to expand the previously experimental only database is detailed. This new methodology is also compared to experimental data and used to establish a link between hydrogen concentration in the oxide and packaged hydrogen gas. Links are established between Technology Computer Aided Design (TCAD), circuit simulation, and experimental data. These links are then used to establish a better foundation for the model. New methodologies are added to the modeling software so that it is possible to simulate transient based characteristics like slew rate.
ContributorsRoark, Samuel (Author) / Barnaby, Hugh (Thesis advisor) / Sanchez Esqueda, Ivan (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2022