Matching Items (2)
Filtering by

Clear all filters

136350-Thumbnail Image.png
Description
In the U.S., less than 20 percent of wildlife strikes are reported, which leaves a large portion of incidents unaccounted for. Although wildlife strikes at airports often go unreported, since the early 1990's the number of wildlife strikes has increased five-fold and the number of damaging strikes has increased 1.5-fold.

In the U.S., less than 20 percent of wildlife strikes are reported, which leaves a large portion of incidents unaccounted for. Although wildlife strikes at airports often go unreported, since the early 1990's the number of wildlife strikes has increased five-fold and the number of damaging strikes has increased 1.5-fold. Goals for this project include determining if biological and landscape variables are good predictors of wildlife strikes. We define response variables as the number of reported wildlife strikes per 10,000 airport operations. We studied seven major airports around Phoenix, Arizona and 30 large airports in the western U.S. In the Phoenix metro valley, airports varied from having 0.3 strikes per year per 10,000 operations to having 14.5 strikes from 2009 to 2013. We determined bird richness by using the citizen-science database "eBird,"and measured species richness within a 15 kilometer area of each airport. Species richness between hotspots ranged from 131 to 320. Seasonal differences were determined using an analysis of variance (ANOVA) analysis for the seven Phoenix metro airports as well as the 30 western U.S. airports. Our results showed that there was a seasonal difference in wildlife strikes in the majority of our airports. We also used land use data from CAP LTER to determine any environmental factors such as vicinity to water or fence line located within five kilometers from airports using ArcGIS. These results are important because they are helpful in determining the factors influencing wildlife strikes based on the number of strikes reported.
ContributorsSalaki, Logan (Co-author) / Montgomery, Brett (Co-author) / Bateman, Heather (Thesis director) / Niemczyk, Mary (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05