Matching Items (35)
Filtering by

Clear all filters

153909-Thumbnail Image.png
Description
Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.
ContributorsChung, Chun-Jen (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Xue, Guoliang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
156290-Thumbnail Image.png
Description
Data breaches have been on a rise and financial sector is among the top targeted. It can take a few months and upto a few years to identify the occurrence of a data breach. A major motivation behind data breaches is financial gain, hence most of the data ends u

Data breaches have been on a rise and financial sector is among the top targeted. It can take a few months and upto a few years to identify the occurrence of a data breach. A major motivation behind data breaches is financial gain, hence most of the data ends up being on sale on the darkweb websites. It is important to identify sale of such stolen information on a timely and relevant manner. In this research, we present a system for timely identification of sale of stolen data on darkweb websites. We frame identifying sale of stolen data as a multi-label classification problem and leverage several machine learning approaches based on the thread content (textual) and social network analysis of the user communication seen on darkweb websites. The system generates alerts about trends based on popularity amongst the users of such websites. We evaluate our system using the K-fold cross validation as well as manual evaluation of blind (unseen) data. The method of combining social network and textual features outperforms baseline method i.e only using textual features, by 15 to 20 % improved precision. The alerts provide a good insight and we illustrate our findings by cases studies of the results.
ContributorsDharaiya, Krishna Tushar (Author) / Shakarian, Paulo (Thesis advisor) / Doupe, Adam (Committee member) / Shoshitaishvili, Yan (Committee member) / Arizona State University (Publisher)
Created2018
156681-Thumbnail Image.png
Description
With the rise of the Internet of Things, embedded systems have become an integral part of life and can be found almost anywhere. Their prevalence and increased interconnectivity has made them a prime target for malicious attacks. Today, the vast majority of embedded devices are powered by ARM processors. To

With the rise of the Internet of Things, embedded systems have become an integral part of life and can be found almost anywhere. Their prevalence and increased interconnectivity has made them a prime target for malicious attacks. Today, the vast majority of embedded devices are powered by ARM processors. To protect their processors from attacks, ARM introduced a hardware security extension known as TrustZone. It provides an isolated execution environment within the embedded device in which to deploy various memory integrity and malware detection tools.

Even though Secure World can monitor the Normal World, attackers can attempt to bypass the security measures to retain control of a compromised system. CacheKit is a new type of rootkit that exploits such a vulnerability in the ARM architecture to hide in Normal World cache from memory introspection tools running in Secure World by exploiting cache locking mechanisms. If left unchecked, ARM processors that provide hardware assisted cache locking for performance and time-critical applications in real-time and embedded systems would be completely vulnerable to this undetectable and untraceable attack. Therefore, a new approach is needed to ensure the correct use of such mechanisms and prevent malicious code from being hidden in the cache.

CacheLight is a lightweight approach that leverages the TrustZone and Virtualization extensions of the ARM architecture to allow the system to continue to securely provide these hardware facilities to users while preventing attackers from exploiting them. CacheLight restricts the ability to lock the cache to the Secure World of the processor such that the Normal World can still request certain memory to be locked into the cache by the secure operating system (OS) through a Secure Monitor Call (SMC). This grants the secure OS the power to verify and validate the information that will be locked in the requested cache way thereby ensuring that any data that remains in the cache will not be inconsistent with what exists in main memory for inspection. Malicious attempts to hide data can be prevented and recovered for analysis while legitimate requests can still generate valid entries in the cache.
ContributorsGutierrez, Mauricio (Author) / Zhao, Ziming (Thesis advisor) / Doupe, Adam (Committee member) / Shoshitaishvili, Yan (Committee member) / Arizona State University (Publisher)
Created2018
133172-Thumbnail Image.png
Description
This thesis explores cybersecurity as a profession and whether it belongs in academia. It also explores exactly how it should be implemented into universities. Whether in a bachelor's program or master's program, cybersecurity degree or cybersecurity concentration, engineering school or business school, cybersecurity has a place in higher education that

This thesis explores cybersecurity as a profession and whether it belongs in academia. It also explores exactly how it should be implemented into universities. Whether in a bachelor's program or master's program, cybersecurity degree or cybersecurity concentration, engineering school or business school, cybersecurity has a place in higher education that plays an integral role in helping fix the issue of a lack of cybersecurity professionals. At Arizona State University, a cybersecurity concentration currently exists in the engineering school at both the bachelor's and master's level as well as the business school at the bachelor level. The one location it is missing from is the master's level of the business school. The goal of this report is to suggest a change to the specific curriculum in the Information Systems Department at the W.P. Carey School of Business. This thesis compares the curriculum of the Master of Science in Information Management (MSIM) program at Arizona State to eight other programs around the country that either offer a cybersecurity concentration option, offer cybersecurity degrees, or have highly ranked MSIM programs. A new curriculum is recommended that includes greater flexibility for students in customizing their education to specific career fields within information systems, offers multiple certificate options including cybersecurity, and better matches what the other highly ranked programs are offering to students. This curriculum is not only better for students attending or seeking Arizona State University but better for the University itself. It offers a more well-rounded scope of topics than the current program does while maintaining the identity and strengths of the current program.
ContributorsWelcome, Anthony (Author) / Sopha, Matthew (Thesis director) / Mazzola, Daniel (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135242-Thumbnail Image.png
Description
Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply

Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply obtaining such exploits – so an alternative approach is needed to understand what exploits an attacker will most likely purchase and how to defend against them. In this paper, we introduce a data-driven security game framework to model an attacker and provide policy recommendations to the defender. In addition to providing a formal framework and algorithms to develop strategies, we present experimental results from applying our framework, for various system configurations, on real-world exploit market data actively mined from the darknet.
ContributorsRobertson, John James (Author) / Shakarian, Paulo (Thesis director) / Doupe, Adam (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133698-Thumbnail Image.png
Description
In online social networks the identities of users are concealed, often by design. This anonymity makes it possible for a single person to have multiple accounts and to engage in malicious activity such as defrauding a service providers, leveraging social influence, or hiding activities that would otherwise be detected. There

In online social networks the identities of users are concealed, often by design. This anonymity makes it possible for a single person to have multiple accounts and to engage in malicious activity such as defrauding a service providers, leveraging social influence, or hiding activities that would otherwise be detected. There are various methods for detecting whether two online users in a network are the same people in reality and the simplest way to utilize this information is to simply merge their identities and treat the two users as a single user. However, this then raises the issue of how we deal with these composite identities. To solve this problem, we introduce a mathematical abstraction for representing users and their identities as partitions on a set. We then define a similarity function, SIM, between two partitions, a set of properties that SIM must have, and a threshold that SIM must exceed for two users to be considered the same person. The main theoretical result of our work is a proof that for any given partition and similarity threshold, there is only a single unique way to merge the identities of similar users such that no two identities are similar. We also present two algorithms, COLLAPSE and SIM_MERGE, that merge the identities of users to find this unique set of identities. We prove that both algorithms execute in polynomial time and we also perform an experiment on dark web social network data from over 6000 users that demonstrates the runtime of SIM_MERGE.
ContributorsPolican, Andrew Dominic (Author) / Shakarian, Paulo (Thesis director) / Sen, Arunabha (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134946-Thumbnail Image.png
Description
This thesis project focused on malicious hacking community activities accessible through the I2P protocol. We visited 315 distinct I2P sites to identify those with malicious hacking content. We also wrote software to scrape and parse data from relevant I2P sites. The data was integrated into the CySIS databases for further

This thesis project focused on malicious hacking community activities accessible through the I2P protocol. We visited 315 distinct I2P sites to identify those with malicious hacking content. We also wrote software to scrape and parse data from relevant I2P sites. The data was integrated into the CySIS databases for further analysis to contribute to the larger CySIS Lab Darkweb Cyber Threat Intelligence Mining research. We found that the I2P cryptonet was slow and had only a small amount of malicious hacking community activity. However, we also found evidence of a growing perception that Tor anonymity could be compromised. This work will contribute to understanding the malicious hacker community as some Tor users, seeking assured anonymity, transition to I2P.
ContributorsHutchins, James Keith (Author) / Shakarian, Paulo (Thesis director) / Ahn, Gail-Joon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155132-Thumbnail Image.png
Description
This research evaluates a cyber test-bed, DEXTAR (Defense Exercises for Team Awareness Research), and examines the relationship between good and bad team performance in increasingly difficult scenarios. Twenty-one computer science graduate students (seven three-person teams), with experience in cybersecurity, participated in a team-based cyber defense exercise in the context of

This research evaluates a cyber test-bed, DEXTAR (Defense Exercises for Team Awareness Research), and examines the relationship between good and bad team performance in increasingly difficult scenarios. Twenty-one computer science graduate students (seven three-person teams), with experience in cybersecurity, participated in a team-based cyber defense exercise in the context of DEXTAR, a high fidelity cybersecurity testbed. Performance measures were analyzed in addition to team process, team behavior, and workload to examine the relationship between good and bad teams. Lessons learned are reported that will inform the next generation of DEXTAR.
ContributorsBradbury, Aaron (Author) / Cooke, Nancy J. (Thesis advisor) / Branaghan, Russell (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2016
155371-Thumbnail Image.png
Description
Decades of research in cyberpsychology and human-computer interaction has pointed to a strong distinction between the online and offline worlds, suggesting that attitudes and behaviors in one domain do not necessarily generalize to the other. However, as humans spend increasing amounts of time in the digital world, psychological understandings of

Decades of research in cyberpsychology and human-computer interaction has pointed to a strong distinction between the online and offline worlds, suggesting that attitudes and behaviors in one domain do not necessarily generalize to the other. However, as humans spend increasing amounts of time in the digital world, psychological understandings of safety may begin to influence human perceptions of threat while online. This dissertation therefore examines whether perceived threat generalizes between domains across archival, correlational, and experimental research methods. Four studies offer insight into the relationship between objective indicators of physical and online safety on the levels of nation and state; the relationship between perceptions of these forms of safety on the individual level; and whether experimental manipulations of one form of threat influence perceptions of threat in the opposite domain. In addition, this work explores the impact of threat perception-related personal and situational factors, as well as the impact of threat type (i.e., self-protection, resource), on this hypothesized relationship.

Collectively, these studies evince a positive relationship between physical and online safety in macro-level actuality and individual-level perception. Among individuals, objective indicators of community safety—as measured by zip code crime data—were a positive reflection of perceptions of physical safety; these perceptions, in turn, mapped onto perceived online safety. The generalization between perceived physical threat and online threat was stronger after being exposed to self-protection threat manipulations, possibly underscoring the more dire nature of threats to bodily safety than those to valuable resources. Most notably, experimental findings suggest that it is not the physical that informs the digital, but rather the opposite: Online threats blur more readily into physical domains, possibly speaking to the concern that dangers specific to the digital world will bleed into the physical one. This generalization of threat may function as a strategy to prepare oneself for future dangers wherever they might appear; and indeed, perceived threat in either world positively influenced desires to act on recommended safety practices. Taken together, this research suggests that in the realm of threat perception, the boundaries between physical and digital are less rigid than may have been previously believed.
ContributorsBodford, Jessica E (Author) / Kwan, Virginia S. Y. (Thesis advisor) / Adame, Bradley (Committee member) / Kenrick, Douglas T. (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2017
168710-Thumbnail Image.png
Description
The omnipresent data, growing number of network devices, and evolving attack techniques have been challenging organizations’ security defenses over the past decade. With humongous volumes of logs generated by those network devices, looking for patterns of malicious activities and identifying them in time is growing beyond the capabilities of their

The omnipresent data, growing number of network devices, and evolving attack techniques have been challenging organizations’ security defenses over the past decade. With humongous volumes of logs generated by those network devices, looking for patterns of malicious activities and identifying them in time is growing beyond the capabilities of their defense systems. Deep Learning, a subset of Machine Learning (ML) and Artificial Intelligence (AI), fills in this gapwith its ability to learn from huge amounts of data, and improve its performance as the data it learns from increases. In this dissertation, I bring forward security issues pertaining to two top threats that most organizations fear, Advanced Persistent Threat (APT), and Distributed Denial of Service (DDoS), along with deep learning models built towards addressing those security issues. First, I present a deep learning model, APT Detection, capable of detecting anomalous activities in a system. Evaluation of this model demonstrates how it can contribute to early detection of an APT attack with an Area Under the Curve (AUC) of up to 91% on a Receiver Operating Characteristic (ROC) curve. Second, I present DAPT2020, a first of its kind dataset capturing an APT attack exploiting web and system vulnerabilities in an emulated organization’s production network. Evaluation of the dataset using well known machine learning models demonstrates the need for better deep learning models to detect APT attacks. I then present DAPT2021, a semi-synthetic dataset capturing an APT attackexploiting human vulnerabilities, alongside 2 less skilled attacks. By emulating the normal behavior of the employees in a set target organization, DAPT2021 has been created to enable researchers study the causations and correlations among the captured data, a much-needed information to detect an underlying threat early. Finally, I present a distributed defense framework, SmartDefense, that can detect and mitigate over 90% of DDoS traffic at the source and over 97.5% of the remaining DDoS traffic at the Internet Service Provider’s (ISP’s) edge network. Evaluation of this work shows how by using attributes sent by customer edge network, SmartDefense can further help ISPs prevent up to 51.95% of the DDoS traffic from going to the destination.
ContributorsMyneni, Sowmya (Author) / Xue, Guoliang (Thesis advisor) / Doupe, Adam (Committee member) / Li, Baoxin (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2022