Matching Items (3)
Filtering by

Clear all filters

154718-Thumbnail Image.png
Description
Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies of ankle angle perturbation over wider ranges of grade orientations in static conditions; however, these studies do not account for effects during the gait cycle. Furthermore, contemporary studies on this topic neglect critical sources of unnatural stimulus in the design of investigative technology. It is hypothesized that the investigation of ankle angle perturbations in the frontal plane, particularly in the context of inter-leg coordination mechanisms, results in a more complete characterization of the effects of surface grade on human gait mechanisms. This greater understanding could potentially lead to significant applications in gait rehabilitation, especially for individuals who suffer from impairment as a result of stroke. A wearable pneumatic device was designed to impose inversion and eversion perturbations on the ankle through simulated surface grade changes. This prototype device was fabricated, characterized, and tested in order to assess its effectiveness. After testing and characterizing this device, it was used in a series of experiments on human subjects while data was gathered on muscular activation and gait kinematics. The results of the characterization show success in imposing inversion and eversion angle perturbations of approximately 9° with a response time of 0.5 s. Preliminary experiments focusing on inter-leg coordination with healthy human subjects show that one-sided inversion and eversion perturbations have virtually no effect on gait kinematics. However, changes in muscular activation from one-sided perturbations show statistical significance in key lower limb muscles. Thus, the prototype device demonstrates novelty in the context of human gait research for potential applications in rehabilitation.
ContributorsBarkan, Andrew (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2016
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
158494-Thumbnail Image.png
Description
The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in

The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in lower extremity function is essential not just to advance the design and control of robots physically interacting with the human lower extremities but also in rehabilitation of humans suffering from neurodegenerative disorders.

In order to characterize the ankle mechanics and understand the underlying mechanisms that influence the neuromuscular properties of the ankle, a novel multi-axial robotic platform was developed. The robotic platform is capable of simulating various haptic environments and transiently perturbing the ankle to analyze the neuromechanics of the ankle, specifically the ankle impedance. Humans modulate ankle impedance to perform various tasks of the lower limb. The robotic platform is used to analyze the modulation of ankle impedance during postural balance and locomotion on various haptic environments. Further, various factors that influence modulation of ankle impedance were identified. Using the factors identified during environment dependent impedance modulation studies, the quantitative relationship between these factors, namely the muscle activation of major ankle muscles, the weight loading on ankle and the torque generation at the ankle was analyzed during postural balance and locomotion. A universal neuromuscular model of the ankle that quantitatively relates ankle stiffness, the major component of ankle impedance, to these factors was developed.

This neuromuscular model is then used as a basis to study the alterations caused in ankle behavior due to neurodegenerative disorders such as Multiple Sclerosis and Stroke. Pilot studies to validate the analysis of altered ankle behavior and demonstrate the effectiveness of robotic rehabilitation protocols in addressing the altered ankle behavior were performed. The pilot studies demonstrate that the altered ankle mechanics can be quantified in the affected populations and correlate with the observed adverse effects of the disability. Further, robotic rehabilitation protocols improve ankle control in affected populations as seen through functional improvements in postural balance and locomotion, validating the neuromuscular approach for rehabilitation.
ContributorsNalam, Varun (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Lockhart, Thurmon (Committee member) / Arizona State University (Publisher)
Created2020