Matching Items (37)
Filtering by

Clear all filters

152137-Thumbnail Image.png
Description
Firstly, this study uses community asset mapping guided by the Community Capitals Framework (CCF) to explore the linkages between Protected Areas (PAs), tourism and community livelihoods. Secondly, it assesses changes in community needs facilitated by community participation in wildlife-based tourism in a protected area setting. Thirdly and finally, the study

Firstly, this study uses community asset mapping guided by the Community Capitals Framework (CCF) to explore the linkages between Protected Areas (PAs), tourism and community livelihoods. Secondly, it assesses changes in community needs facilitated by community participation in wildlife-based tourism in a protected area setting. Thirdly and finally, the study assesses whether the introduction of community wildlife-based tourism in a protected area as a sustainable management tool has led to the spiraling up or down of community capitals. The study adopted qualitative research method approach and made use of data collected through community asset mapping supplemented by data from focus group discussions, households, key informants, and secondary data materials that were analyzed and interpreted in light of community capital framework. The Chobe National Park (CNP) and Chobe Enclave Conservation Trust (CECT); a community living adjacent to CNP in Botswana provides the context on which this study's discussion focuses. Results indicate that the accession of Botswana from colonialism through post colonialism era intertwined considerable institutional arrangement changes in the field of protected area governance that reflects evolutionary management styles. Protected areas, tourism and community livelihoods linkages are based on many inter-dependents of community capitals relationships which are dependent on community socio-economic activities. In assessing changes in community needs, the results indicate that participation in wildlife-based tourism has brought both positive and negative changes that have implications on both the status quo for community livelihoods and protected areas, namely; the influence of changes in community capitals dynamics, mechanization and commercialization of agriculture, government funded infrastructural development, income generation, and the commodification of some of the community capitals. Finally, the increased livelihoods options and diversification dynamics, fragile wildlife-livestock co-existence, heightened human-wildlife conflicts, environmental education and awareness are the emerging themes that explain how the introduction of tourism in a protected area setting affect the spiraling up and down of the community capitals dynamics.
ContributorsStone, Moren T. (Author) / Nyaupane, Gyan P (Thesis advisor) / Buduk, Megha (Committee member) / Thapa, Brijesh (Committee member) / Timothy, Dallen J. (Committee member) / Arizona State University (Publisher)
Created2013
152418-Thumbnail Image.png
Description
Species distribution modeling is used to study changes in biodiversity and species range shifts, two currently well-known manifestations of climate change. The focus of this study is to explore how distributions of suitable habitat might shift under climate change for shrub communities within the Santa Monica Mountains National Recreation Area

Species distribution modeling is used to study changes in biodiversity and species range shifts, two currently well-known manifestations of climate change. The focus of this study is to explore how distributions of suitable habitat might shift under climate change for shrub communities within the Santa Monica Mountains National Recreation Area (SMMNRA), through a comparison of community level to individual species level distribution modeling. Species level modeling is more commonly utilized, in part because community level modeling requires detailed community composition data that are not always available. However, community level modeling may better detect patterns in biodiversity. To examine the projected impact on suitable habitat in the study area, I used the MaxEnt modeling algorithm to create and evaluate species distribution models with presence only data for two future climate models at community and individual species levels. I contrasted the outcomes as a method to describe uncertainty in projected models. To derive a range of sensitivity outcomes I extracted probability frequency distributions for suitable habitat from raster grids for communities modeled directly as species groups and contrasted those with communities assembled from intersected individual species models. The intersected species models were more sensitive to climate change relative to the grouped community models. Suitable habitat in SMMNRA's bounds was projected to decline from about 30-90% for the intersected models and about 20-80% for the grouped models from its current state. Models generally captured floristic distinction between community types as drought tolerance. Overall the impact on drought tolerant communities, growing in hotter, drier habitat such as Coastal Sage Scrub, was predicted to be less than on communities growing in cooler, moister more interior habitat, such as some chaparral types. Of the two future climate change models, the wetter model projected less impact for most communities. These results help define risk exposure for communities and species in this conservation area and could be used by managers to focus vegetation monitoring tasks to detect early response to climate change. Increasingly hot and dry conditions could motivate opportunistic restoration projects for Coastal Sage Scrub, a threatened vegetation type in Southern California.
ContributorsJames, Jennifer (Author) / Franklin, Janet (Thesis advisor) / Rey, Sergio (Committee member) / Wentz, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2014
152652-Thumbnail Image.png
Description
A mule deer herd exists on the northern rim of the Grand Canyon, located on the North Kaibab Plateau. Historical references to this indigenous mule deer herd presented reports of periodic population irruption and collapse. Partially funded by the Arizona Game and Fish Department and the Arizona Deer Association, examination

A mule deer herd exists on the northern rim of the Grand Canyon, located on the North Kaibab Plateau. Historical references to this indigenous mule deer herd presented reports of periodic population irruption and collapse. Partially funded by the Arizona Game and Fish Department and the Arizona Deer Association, examination of herd nutritional and metabolic status from the Fall 2005 - Spring 2008 was completed at the request of AzGFD and ADA. Habitat analysis included forage micro-histological, protein, and caloric content plus whole blood and plasma assays gauging herd metabolic response. Modelling was completed using best management practices wildlife energy demand calculations and principal component analysis. Forage quality analysis and modelling suggest a sufficient amount of nitrogen (N) available (DPI) to the deer for protein synthesis. Energy analysis (MEI) of forage suggest caloric deficiencies are widely prevalent on the north Kaibab plateau. Principal component analysis integrates forage and metabolic results providing a linear regression model describing the dynamics of forage utilization, energy availability, and forage nitrogen supply with metabolic demand and response of the mule deer herd. Most of the plasma and blood metabolic indicators suggest baseline values for the North Kaibab mule deer. Albumin values are in agreement with albumin values for mule deer in the Southwest. I suggest that the agreed values become a standard for mule deer in the Southwestern U.S. As excess dietary N is converted to a caloric resource, a continual state of under-nutrition exists for the deer upon entering the N. Kaibab winter range. The population is exceeding the nutritional resource plane that the winter habitat provides. Management recommendations include implementation of multiple small-scale habitat rehabilitation efforts over time, including invasive juniper (Juniperous osteosperma) and piñon (Pinus edulis) management, prescribed burning to control big sage (Artemesia tridentata) populations, and reseeding treated areas with a seed mix of native shrubs, grasses and forbs. I recommended that the population size of the North Kaibab deer herd is maintained at the current size with natural selection controlling growth, or the population be artificially reduced through increased hunting opportunities.
ContributorsActon, Matthew W (Author) / Miller, William H. (Thesis advisor) / Brady, Ward W. (Committee member) / Huffman, Holly (Committee member) / Arizona State University (Publisher)
Created2014
152736-Thumbnail Image.png
Description
Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for

Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for both wildlife species and livestock. Broadcast burning, juniper thinning and slash pile burns are the principle tools used to accomplish resource objectives. Line cover, belt transect, densities, heights and biomass of vegetation data were collected to determine the response of the vegetative community to habitat restoration activities. Principal Component Analysis (PCA) was used to reduce data analysis to the more influential factors. Regression analysis was conducted for statistically significant response variables. Quadratic regression analysis found low predictive values. In broadcast burn treatment units, all important factors as identified by PCA had low predictive factors but significantly differed (R2 <0.01, p<0.05) between unburned and the years post treatment. Regression analysis found significant, albeit weak, relationships between time since treatment and independent variables. In pile burn treatment units, data reduction by PCA was not possible in a biologically meaningful way due to the high variability within treatment units. This suggests the effect of juniper encroachment on grassland vegetation persists long after junipers have been cut and burned. This study concluded that broadcast burning of the central Arizona grasslands does significantly alter many components of the vegetative community. Fuels treatments generally initially reduced both perennial woody species and grasses in number and height for two year post fire. However, palatable shrubs, in particular shrubby buckwheat, were not significantly different in broadcast burn treatment areas. The vegetative community characteristics of juniper encroached woodlands of central Arizona are unaffected by the removal and burning of junipers aside from the removal of hiding cover for predators for multiple years. It is recommended that habitat restoration activities continue provided the needs of wildlife are considered, especially pronghorn, with the incorporation of state and transition models specific to each of the respective ecological site descriptions and with the consideration of the effects of fire to pronghorn fawning habitat.
ContributorsSitzmann, Paul Roman (Author) / Miller, William (Thesis advisor) / Alford, Eddie (Committee member) / Green, Douglas (Committee member) / Arizona State University (Publisher)
Created2014
152746-Thumbnail Image.png
Description
Many wildlife species that are essential to human livelihoods are targeted with the aim of extracting short-term benefits. Overexploitation, resulting from failed common-pool resource governance, has endangered the sustainability of large animal species, in particular. Rights-based approaches to wildlife conservation offer a possible path forward. In a wildlife market, property

Many wildlife species that are essential to human livelihoods are targeted with the aim of extracting short-term benefits. Overexploitation, resulting from failed common-pool resource governance, has endangered the sustainability of large animal species, in particular. Rights-based approaches to wildlife conservation offer a possible path forward. In a wildlife market, property rights, or shares of an animal population, are allocated to resource users with interests in either harvest or preservation. Here, I apply the Social-Ecological Systems (SES) framework (Ostrom, 2009) to identify the conditions under which the ecological, social, and economic outcomes of a conservation market are improved compared to the status quo. I first consider three case studies (Bighorn sheep, white rhino, and Atlantic Bluefin tuna) all of which employ different market mechanisms. Based on the SES framework and these case studies, I then evaluate whether markets are a feasible management option for other socially and ecologically significant species, such as whales (and similar highly migratory species), and whether market instruments are capable of accommodating non-consumptive environmental values in natural resource decision making. My results suggest that spatial and temporal distribution, ethical and cultural relevance, and institutional histories compatible with commodification of wildlife are key SES subsystem variables. Successful conservation markets for cross-boundary marine species, such as whales, sea turtles, and sharks, will require intergovernmental agreements.
ContributorsSturm, Melanie (Author) / Minteer, Ben A (Thesis advisor) / Gerber, Leah R. (Thesis advisor) / Perrings, Charles (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2014
153097-Thumbnail Image.png
Description
This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach

This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach may be inadequate. In this chapter, I first synthesize the conventional yield-per-recruit analysis, and then extend this conventional approach by incorporating a size-price function for a revenue-per-recruit analysis. An optimal control approach is then used to derive a general bioeconomic solution for the optimal harvesting of a short-lived single cohort. This approach prevents economically premature harvesting and provides an "optimal economic yield". By comparing the yield- and revenue-per-recruit management strategies with the bioeconomic management strategy, I am able to test the economic efficiency of the conventional yield-per-recruit approach. This is illustrated with a numerical study. It shows that a bioeconomic strategy can significantly improve economic welfare compared with the yield-per-recruit strategy, particularly in the face of high natural mortality. Nevertheless, I find that harvesting on a revenue-per-recruit basis improves management policy and can generate a rent that is close to that from bioeconomic analysis, in particular when the natural mortality is relatively low.

The second substantive chapter explores the conservation potential of a whale permit market under bounded economic uncertainty. Pro- and anti-whaling stakeholders are concerned about a recently proposed, "cap and trade" system for managing the global harvest of whales. Supporters argue that such an approach represents a novel solution to the current gridlock in international whale management. In addition to ethical objections, opponents worry that uncertainty about demand for whale-based products and the environmental benefits of conservation may make it difficult to predict the outcome of a whale share market. In this study, I use population and economic data for minke whales to examine the potential ecological consequences of the establishment of a whale permit market in Norway under bounded but significant economic uncertainty. A bioeconomic model is developed to evaluate the influence of economic uncertainties associated with pro- and anti- whaling demands on long-run steady state whale population size, harvest, and potential allocation. The results indicate that these economic uncertainties, in particular on the conservation demand side, play an important role in determining the steady state ecological outcome of a whale share market. A key finding is that while a whale share market has the potential to yield a wide range of allocations between conservation and whaling interests - outcomes in which conservationists effectively "buy out" the whaling industry seem most likely.

The third substantive chapter examines the sea lice externality between farmed fisheries and wild fisheries. A central issue in the debate over the effect of fish farming on the wild fisheries is the nature of sea lice population dynamics and the wild juvenile mortality rate induced by sea lice infection. This study develops a bioeconomic model that integrates sea lice population dynamics, fish population dynamics, aquaculture and wild capture salmon fisheries in an optimal control framework. It provides a tool to investigate sea lice control policy from the standpoint both of private aquaculture producers and wild fishery managers by considering the sea lice infection externality between farmed and wild fisheries. Numerical results suggest that the state trajectory paths may be quite different under different management regimes, but approach the same steady state. Although the difference in economic benefits is not significant in the particular case considered due to the low value of the wild fishery, I investigate the possibility of levying a tax on aquaculture production for correcting the sea lice externality generated by fish farms.
ContributorsHuang, Biao (Author) / Abbott, Joshua K (Thesis advisor) / Perrings, Charles (Thesis advisor) / Gerber, Leah R. (Committee member) / Muneepeerakul, Rachata (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153210-Thumbnail Image.png
Description
This research assessed the sustainability of protected area-based tourism systems in Nepal. The research was composed of three interrelated studies. The first study evaluated different approaches to protected area governance. This was a multiple-case study research involving three protected areas in Nepal: the Annapurna Conservation Area, Chitwan National Park, and

This research assessed the sustainability of protected area-based tourism systems in Nepal. The research was composed of three interrelated studies. The first study evaluated different approaches to protected area governance. This was a multiple-case study research involving three protected areas in Nepal: the Annapurna Conservation Area, Chitwan National Park, and the Kanchenjunga Conservation Area. Data were collected from various published and unpublished sources and supplemented with 55 face-to-face interviews. Results revealed that outcomes pertaining to biodiversity conservation, community livelihoods, and sustainable tourism vary across these protected areas. The study concluded that there is no institutional panacea for managing protected areas. The second study diagnosed the sustainability of tourism in two destination communities: Ghandruk and Sauraha, which are located within the Annapurna Conservation Area and Chitwan National Park, respectively. A systemic, holistic approach--the social-ecological system framework--was used to analyze the structures, processes, and outcomes of tourism development. Data collection involved 45 face-to-face semi-structured interviews and a review of published and unpublished documents. Results revealed that tourism has several positive and a few negative sociocultural, economic, and ecological outcomes in both communities. Overall, tourism has progressed towards sustainability in these destinations. The third study examined tourism stakeholders' perspectives regarding sustainable tourism outcomes in protected areas. The study compared the responses of residents with residents, as well as tourists with tourists, across the Annapurna Conservation Area and Chitwan National Park. Tourism sustainability was evaluated with six tourism impact subscales measuring negative and positive ecological, economic, and social impacts. Data were collected using the survey method. Respondents included 230 residents and 205 tourists in Annapurna, and 220 residents and 210 tourists in Chitwan. The findings revealed that the residents across these protected areas perceived positive and negative impacts differently, as did the tourists, suggesting that the form of tourism development affects the sustainability outcomes in protected areas. Overall, this research concluded that protected areas and tourism are intricately related, and sustainable management of a protected area-based tourism system requires a polycentric adaptive approach that warrants a broad participation of relevant stakeholders.
ContributorsPoudel, Surya (Author) / Nyaupane, Gyan P (Thesis advisor) / Timothy, Dallen J. (Committee member) / Budruk, Megha (Committee member) / Parker, Peter (Committee member) / Arizona State University (Publisher)
Created2014
153267-Thumbnail Image.png
Description
In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent,

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent, Diorhabda carinulata, and riparian restoration.

During 2013 and 2014, vegetation and herpetofauna were monitored at 21 riparian locations along the Virgin River via trapping and visual encounter surveys. Study sites were divided into four stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence of restoration activities: Tam, Tam-Pros, Tam-Pop/Sal, and Restored Tam-Pop/Sal. Restoration activities consisted of mechanical removal of non-native trees, transplanting native trees, and introduction of water flow. All sites were affected by biological control. I predicted that herpetofauna abundance would vary between stand types and that herpetofauna abundance would be greatest in Restored Tam-Pop/Sal sites due to increased habitat openness and variation following restoration efforts.

Results from trapping indicated that Restored Tam-Pop/Sal sites had three times more total lizard and eight times more Sceloporus uniformis captures than other stand types. Anaxyrus woodhousii abundance was greatest in Tam-Pop/Sal and Restored Tam-Pop/Sal sites. Visual encounter surveys indicated that herpetofauna abundance was greatest in the Restored Tam-Pop/Sal site compared to the adjacent Unrestored Tam-Pop/Sal site. Habitat variables were reduced to six components using a principle component analysis and significant differences were detected among stand types. Restored Tam-Pop/Sal sites were most similar to Tam-Pop/Sal sites. S. uniformis were positively associated with large woody debris and high densities of Populus, Salix, and large diameter Prosopis.

Restored Tam-Pop/Sal sites likely supported higher abundances of herpetofauna, as these areas exhibited greater habitat heterogeneity. Restoration activities created a mosaic habitat by reducing canopy cover and increasing native tree density and surface water. Natural resource managers should consider implementing additional restoration efforts following biological control when attempting to restore riparian areas dominated by Tamarix and other non-native trees.
ContributorsMosher, Kent (Author) / Bateman, Heather L (Thesis advisor) / Stromberg, Juliet C. (Committee member) / Miller, William H. (Committee member) / Arizona State University (Publisher)
Created2014
149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
149869-Thumbnail Image.png
Description
Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the

Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the escape of farm raised fish into natural bodies of water. However, the raising of certain types of fish, such as tilapia, seems to be an environmentally better proposition than raising other types of fish, such as salmon. This paper will explore the problems associated with fish farming, as well as offer a model, based on the literature, and interviews with fish farmers, to make small-scale fish farming both more environmentally, and more economically, sustainable. This paper culminates with a model for small-scale, specifically semi-subsistence, fish farmers. This model emphasizes education of the fish farmers, as well as educators learning from the fish farmers they interact with. The goal of this model is to help these fish farmers become both more environmentally and economically sustainable.
ContributorsLongoni, Robert A (Author) / Parmentier, Mary Jane (Thesis advisor) / Grossman, Gary (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011