Matching Items (4)
Filtering by

Clear all filters

156025-Thumbnail Image.png
Description
Sustainability depends in part on our capacity to resolve dilemmas of the commons in Coupled Infrastructure Systems (CIS). Thus, we need to know more about how to incentivize individuals to take collective action to manage shared resources. Moreover, given that we will experience new and more extreme weather events due

Sustainability depends in part on our capacity to resolve dilemmas of the commons in Coupled Infrastructure Systems (CIS). Thus, we need to know more about how to incentivize individuals to take collective action to manage shared resources. Moreover, given that we will experience new and more extreme weather events due to climate change, we need to learn how to increase the robustness of CIS to those shocks. This dissertation studies irrigation systems to contribute to the development of an empirically based theory of commons governance for robust systems. I first studied the eight institutional design principles (DPs) for long enduring systems of shared resources that the Nobel Prize winner Elinor Ostrom proposed in 1990. I performed a critical literature review of 64 studies that looked at the institutional configuration of CIS, and based on my findings I propose some modifications of their definitions and application in research and policy making. I then studied how the revisited design principles, when analyzed conjointly with biophysical and ethnographic characteristics of CISs, perform to avoid over-appropriation, poverty and critical conflicts among users of an irrigation system. After carrying out a meta-analysis of 28 cases around the world, I found that particular combinations of those variables related to population size, countries corruption, the condition of water storage, monitoring of users behavior, and involving users in the decision making process for the commons governance, were sufficient to obtain the desired outcomes. The two last studies were based on the Peruvian Piura Basin, a CIS that has been exposed to environmental shocks for decades. I used secondary and primary data to carry out a longitudinal study using as guidance the robustness framework, and different hypothesis from prominent collapse theories to draw potential explanations. I then developed a dynamic model that shows how at the current situation it is more effective to invest in rules enforcement than in the improvement of the physical infrastructure (e.g. reservoir). Finally, I explored different strategies to increase the robustness of the system, through enabling collective action in the Basin.
ContributorsRubinos, Cathy (Author) / Anderies, John M (Thesis advisor) / Abbott, Joshua K (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2017
157023-Thumbnail Image.png
Description
Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological

Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological system at the global scale, we struggle in our ability to understand, design, implement, and manage solutions to complex global issues such as climate change, water scarcity, food security, and natural disasters. Some have asserted that this is because complex adaptive systems, like these, are moving targets that are only partially designed and partially emergent and self-organizing. Furthermore, these types of systems are difficult to understand and control due to the inherent dynamics of "wicked problems", such as: uncertainty, social dilemmas, inequities, and trade-offs involving multiple feedback loops that sometimes cause both the problems and their potential solutions to shift and evolve together. These problems do not, however, negate our collective need to effectively design, produce, and implement strategies that allow us to appropriate, distribute, manage and sustain the resources on which we depend. Design, however, is not well understood in the context of complex adaptive systems involving common-pool resources. In addition, the relationship between our attempts at control and performance at the system-level over time is not well understood either. This research contributes to our understanding of design in common-pool resource systems by using a multi-methods approach to investigate longitudinal data on an innovative participatory design intervention implemented in nineteen small-scale, farmer-managed irrigation systems in the Indrawati River Basin of Nepal over the last three decades. The intervention was intended as an experiment in using participatory planning, design and construction processes to increase food security and strengthen the self-sufficiency and self-governing capacity of resource user groups within the poorest district in Nepal. This work is the first time that theories of participatory design-processes have been empirically tested against longitudinal data on a number of small-scale, locally managed common-pool resource systems. It clarifies and helps to develop a theory of design in this setting for both scientific and practical purposes.
ContributorsRatajczyk, Elicia Beth (Author) / Anderies, John M (Thesis advisor) / York, Abigail (Committee member) / Shivakoti, Ganesh P (Committee member) / Arizona State University (Publisher)
Created2018
149127-Thumbnail Image.png
Description

This brief article, written for a symposium on "Collaboration and the Colorado River," evaluates the U.S. Department of the Interior's Glen Canyon Dam Adaptive Management Program ("AMP"). The AMP has been advanced as a pioneering collaborative and adaptive approach for both decreasing scientific uncertainty in support of regulatory decision-making and

This brief article, written for a symposium on "Collaboration and the Colorado River," evaluates the U.S. Department of the Interior's Glen Canyon Dam Adaptive Management Program ("AMP"). The AMP has been advanced as a pioneering collaborative and adaptive approach for both decreasing scientific uncertainty in support of regulatory decision-making and helping manage contentious resource disputes -- in this case, the increasingly thorny conflict over the Colorado River's finite natural resources. Though encouraging in some respects, the AMP serves as a valuable illustration of the flaws of existing regulatory processes purporting to incorporate collaboration and regulatory adaptation into the decision-making process. Born in the shadow of the law and improvised with too little thought as to its structure, the AMP demonstrates the need to attend to the design of the regulatory process and integrate mechanisms that compel systematic program evaluation and adaptation. As such, the AMP provides vital information on how future collaborative experiments might be modified to enhance their prospects of success.

ContributorsCamacho, Alejandro E. (Author)
Created2008-09-19
149142-Thumbnail Image.png
Description

The Glen Canyon Dam Adaptive Management Program (AMP) has been identified as a model for natural resource management. We challenge that assertion, citing the lack of progress toward a long-term management plan for the dam, sustained extra-programmatic conflict, and a downriver ecology that is still in jeopardy, despite over ten

The Glen Canyon Dam Adaptive Management Program (AMP) has been identified as a model for natural resource management. We challenge that assertion, citing the lack of progress toward a long-term management plan for the dam, sustained extra-programmatic conflict, and a downriver ecology that is still in jeopardy, despite over ten years of meetings and an expensive research program. We have examined the primary and secondary sources available on the AMP’s design and operation in light of best practices identified in the literature on adaptive management and collaborative decision-making. We have identified six shortcomings: (1) an inadequate approach to identifying stakeholders; (2) a failure to provide clear goals and involve stakeholders in establishing the operating procedures that guide the collaborative process; (3) inappropriate use of professional neutrals and a failure to cultivate consensus; (4) a failure to establish and follow clear joint fact-finding procedures; (5) a failure to produce functional written agreements; and (6) a failure to manage the AMP adaptively and cultivate long-term problem-solving capacity.

Adaptive management can be an effective approach for addressing complex ecosystem-related processes like the operation of the Glen Canyon Dam, particularly in the face of substantial complexity, uncertainty, and political contentiousness. However, the Glen Canyon Dam AMP shows that a stated commitment to collaboration and adaptive management is insufficient. Effective management of natural resources can only be realized through careful attention to the collaborative design and implementation of appropriate problem-solving and adaptive-management procedures. It also requires the development of an appropriate organizational infrastructure that promotes stakeholder dialogue and agency learning. Though the experimental Glen Canyon Dam AMP is far from a success of collaborative adaptive management, the lessons from its shortcomings can foster more effective collaborative adaptive management in the future by Congress, federal agencies, and local and state authorities.

ContributorsSusskind, Lawrence (Author) / Camacho, Alejandro E. (Author) / Schenk, Todd (Author)
Created2010-03-23