Matching Items (8)

Explaining Electronic Voting Protocols to Non-Technical Audiences

Description

As computers become a more embedded aspect of daily life, the importance of communicating ideas in computing and technology to the general public has become increasingly apparent. One such growing

As computers become a more embedded aspect of daily life, the importance of communicating ideas in computing and technology to the general public has become increasingly apparent. One such growing technology is electronic voting. The feasibility of explaining electronic voting protocols was directly investigated through the generation of a presentation based on journal articles and papers identified by the investigator. Extensive use of analogy and visual aids were used to explain various cryptographic concepts. The presentation was then given to a classroom of ASU freshmen, followed by a feedback survey. A self-evaluation on the presentation methods is conducted, and a procedure for explaining subjects in computer science is proposed based on the researcher's personal process.

Contributors

Created

Date Created
  • 2018-05

Surveillance Self-Defense Mass Surveillance and the Role of Visual Communication Design

Description

Fueled by fear in the post-9/11 United States, American intelligence agencies conduct dragnet data collection on global communication. Despite the intention of surveillance as preventative counter-terrorism action, the default search

Fueled by fear in the post-9/11 United States, American intelligence agencies conduct dragnet data collection on global communication. Despite the intention of surveillance as preventative counter-terrorism action, the default search and seizure of global communication poses a threat to our constitutional rights and individual autonomy. This is the case especially for people who may be thought of as in opposition to our current political climate, such as immigrants, people of color, women, people practicing non-western religions, people living outside of the United States, activists, persons engaging in political dissent, and people with intersecting identities. Throughout the Fall and Spring semesters, I have done research, conducted visual experiments and designed exploratory projects in order to more thoroughly identify the issue and explore the ways in which visual communication design can aid in the conversation surrounding global surveillance. It was the intention of my fourth year social issue projects to explore the role of visual communication design in the dialogue surrounding surveillance, principally focusing on the responsibility visual communication design has in spreading ideas about how to globally subvert surveillance until governments disclose information about their unconstitutional actions or until whistleblowers do it for them. My final project, the fourth year social issue exhibit, focuses on how improving our personal password habits can help us gain agency in digital spaces. Using the randomness of rolling a dice to generate entropy can help us generate stronger passwords in order to secure sensitive information online. Using design as a method of communication, my fourth year social issue exhibit shared information about how encrypted passwords can act as the first line of defense in protecting ourselves from invasive data collection and malicious internet activity.

Contributors

Agent

Created

Date Created
  • 2017-05

131401-Thumbnail Image.png

The Number Field Sieve

Description

This thesis project is focused on studying the number field sieve. The number field sieve is a factoring algorithm which uses algebraic number theory and is one of the fastest

This thesis project is focused on studying the number field sieve. The number field sieve is a factoring algorithm which uses algebraic number theory and is one of the fastest known factoring algorithms today. Factoring large integers into prime factors is an extremely difficult problem, yet also extremely important in cryptography. The security of the cryptosystem RSA is entirely based on the difficulty of factoring certain large integers into a product of two distinct large primes. While the number field sieve is one of the fastest factoring algorithms known, it is still not efficient enough to factor cryptographic sized integers.

In this thesis we will examine the algorithm of the number field sieve and discuss some important advancements. In particular, we will focus on the advancements that have been done in the polynomial selection step, the first main step of the number field sieve. The polynomial selected determines the number field by which computations are carried out in the remainder of the algorithm. Selection of a good polynomial allows for better time efficiency and a higher probability that the algorithm will be successful in factoring.

Contributors

Agent

Created

Date Created
  • 2020-05

131750-Thumbnail Image.png

An Exploration of One-Way Functions and their Cryptographic Implications

Description

A one-way function (OWF) is a function that is computationally feasible to compute in one direction, but infeasible to invert. Many current cryptosystems make use of properties of OWFs to

A one-way function (OWF) is a function that is computationally feasible to compute in one direction, but infeasible to invert. Many current cryptosystems make use of properties of OWFs to provide ways to send secure messages. This paper reviews some simple OWFs and examines their use in contemporary cryptosystems and other cryptographic applications. This paper also discusses the broader implications of OWF-based cryptography, including its relevance to fields such as complexity theory and quantum computing, and considers the importance of OWFs in future cryptographic development

Contributors

Agent

Created

Date Created
  • 2020-05

131781-Thumbnail Image.png

An Analysis of The Quantum-Resistant Supersingular Isogeny Based Elliptic Curve Cryptographic Algorithm

Description

In the modern world with the ever growing importance of technology, the challenge of information security is of increasing importance. Cryptographic algorithms used to encode information stored and transmitted over

In the modern world with the ever growing importance of technology, the challenge of information security is of increasing importance. Cryptographic algorithms used to encode information stored and transmitted over the internet must be constantly improving as methodology and technology for cyber attacks improve. RSA and Elliptic Curve cryptosystems such as El Gamal or Diffie-Hellman key exchange are often used as secure asymmetric cryptographic algorithms. However, quantum computing threatens the security of these algorithms. A relatively new algorithm that is based on isogenies between elliptic curves has been proposed in response to this threat. The new algorithm is thought to be quantum resistant as it uses isogeny walks instead of point addition to generate a shared secret key. In this paper we will analyze this algorithm in an attempt to understand the theory behind it. A main goal is to create isogeny graphs to visualize degree 2 and 3 isogeny walks that can be taken between supersingular elliptic curves over small fields to get a better understanding of the workings and security of the algorithm.

Contributors

Created

Date Created
  • 2020-05

150895-Thumbnail Image.png

The design and analysis of hash families for use in broadcast encryption

Description

Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication.

Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged subscribers. Minimal Perfect Hash Families (PHFs) have been shown to provide a basis for the construction of memory-efficient t-resilient Key Pre-distribution Schemes (KPSs) from multiple instances of 1-resilient KPSs. Using this technique, the task of constructing a large t-resilient BES is reduced to finding a near-minimal PHF of appropriate parameters. While combinatorial and probabilistic constructions exist for minimal PHFs with certain parameters, the complexity of constructing them in general is currently unknown. This thesis introduces a new type of hash family, called a Scattering Hash Family (ScHF), which is designed to allow for the scalable and ingredient-independent design of memory-efficient BESs for large parameters, specifically resilience and total number of subscribers. A general BES construction using ScHFs is shown, which constructs t-resilient KPSs from other KPSs of any resilience ≤w≤t. In addition to demonstrating how ScHFs can be used to produce BESs , this thesis explores several ScHF construction techniques. The initial technique demonstrates a probabilistic, non-constructive proof of existence for ScHFs . This construction is then derandomized into a direct, polynomial time construction of near-minimal ScHFs using the method of conditional expectations. As an alternative approach to direct construction, representing ScHFs as a k-restriction problem allows for the indirect construction of ScHFs via randomized post-optimization. Using the methods defined, ScHFs are constructed and the parameters' effects on solution size are analyzed. For large strengths, constructive techniques lose significant performance, and as such, asymptotic analysis is performed using the non-constructive existential results. This work concludes with an analysis of the benefits and disadvantages of BESs based on the constructed ScHFs. Due to the novel nature of ScHFs, the results of this analysis are used as the foundation for an empirical comparison between ScHF-based and PHF-based BESs . The primary bases of comparison are construction efficiency, key material requirements, and message transmission overhead.

Contributors

Agent

Created

Date Created
  • 2012

153890-Thumbnail Image.png

RRAM-based PUF: design and applications in cryptography

Description

The recent flurry of security breaches have raised serious concerns about the security of data communication and storage. A promising way to enhance the security of the system is through

The recent flurry of security breaches have raised serious concerns about the security of data communication and storage. A promising way to enhance the security of the system is through physical root of trust, such as, through use of physical unclonable functions (PUF). PUF leverages the inherent randomness in physical systems to provide device specific authentication and encryption.

In this thesis, first the design of a highly reliable resistive random access memory (RRAM) PUF is presented. Compared to existing 1 cell/bit RRAM, here the sum of the read-out currents of multiple RRAM cells are used for generating one response bit. This method statistically minimizes any early-lifetime failure due to RRAM retention degradation at high temperature or under voltage stress. Using a device model that was calibrated using IMEC HfOx RRAM experimental data, it was shown that an 8 cells/bit architecture achieves 99.9999% reliability for a lifetime >10 years at 125℃ . Also, the hardware area overhead of the proposed 8 cells/bit RRAM PUF architecture was smaller than 1 cell/bit RRAM PUF that requires error correction coding to achieve the same reliability.

Next, a basic security primitive is presented, where the RRAM PUF is embedded in the cryptographic module, SHA-256. This architecture is referred to as Embedded PUF or EPUF. EPUF has a security advantage over SHA-256 as it never exposes the PUF response to the outside world. Instead, in each round, the PUF response is used to change a few bits of the message word to produce a unique message digest for each IC. The use of EPUF as a key generation module for AES is also shown. The hardware area requirement for SHA-256 and AES-128 is then analyzed using synthesis results based on TSMC 65nm library. It is shown that the area overhead of 8 cells/bit RRAM PUF is only 1.08% of the SHA-256 module and 0.04% of the AES-128 module. The security analysis of the PUF based systems is also presented. It is shown that the EPUF-based systems are resistant towards standard attacks on PUFs, and that the security of the cryptographic modules is not compromised.

Contributors

Agent

Created

Date Created
  • 2015

148348-Thumbnail Image.png

An Investigation of Supersingular Elliptic Curves in Quantum-Resistant Cryptography

Description

Many current cryptographic algorithms will eventually become easily broken by Shor's Algorithm once quantum computers become more powerful. A number of new algorithms have been proposed which are not compromised

Many current cryptographic algorithms will eventually become easily broken by Shor's Algorithm once quantum computers become more powerful. A number of new algorithms have been proposed which are not compromised by quantum computers, one of which is the Supersingular Isogeny Diffie-Hellman Key Exchange Protocol (SIDH). SIDH works by having both parties perform random walks between supersingular elliptic curves on isogeny graphs of prime degree and eventually end at the same location, a shared secret.<br/><br/>This thesis seeks to explore some of the theory and concepts underlying the security of SIDH, especially as it relates to finding supersingular elliptic curves, generating isogeny graphs, and implementing SIDH. As elliptic curves and SIDH may be an unfamiliar topic to many readers, the paper begins by providing a brief introduction to elliptic curves, isogenies, and the SIDH Protocol. Next, the paper investigates more efficient methods of generating supersingular elliptic curves, which are important for visualizing the isogeny graphs in the algorithm and the setup of the protocol. Afterwards, the paper focuses on isogeny maps of various degrees, attempting to visualize isogeny maps similar to those used in SIDH. Finally, the paper looks at an implementation of SIDH in PARI/GP and work is done to see the effects of using isogenies of degree greater than 2 and 3 on the security, runtime, and practicality of the algorithm.

Contributors

Agent

Created

Date Created
  • 2021-05