Matching Items (5)
154430-Thumbnail Image.png
Description
The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites

The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application
ContributorsDey, Vikram (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Underwood, Benjamin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
137756-Thumbnail Image.png
Description
Origins is a creative project that consisted of developing a cohesive body of artwork and mounting an exhibition of that work. My work approaches the question of origins from a scientific point of view, visually investigating stories of microbiological growth decay and evolution. I use color, texture, and shape to

Origins is a creative project that consisted of developing a cohesive body of artwork and mounting an exhibition of that work. My work approaches the question of origins from a scientific point of view, visually investigating stories of microbiological growth decay and evolution. I use color, texture, and shape to describe these narratives while also examining the ways in which humans can see these organisms.
ContributorsMcGinnis, Nora Kristine (Author) / Verstegen, Clare (Thesis director) / Eckert, Tom (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor)
Created2013-05
131400-Thumbnail Image.png
Description
For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods

For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods of fabric reinforced textile actuators (FRTAs) have their design expanded. Original design changes to the actuators that improve their performance are detailed in this report. This report also includes an explanation of how the FRTA’s are made, explaining step by step how to make each sub-assembly and explain its function. Comparisons between the presented module and the function of the soft poly limb from previous works are also expanded. Various forms of testing, such as force testing, range of motion testing, and stiffness testing are conducted on the soft robotic module to provide insights into its performance and characteristics. Lastly, present plans for various forms of future work and integration of the soft robotic module into a full soft robotic arm assembly are discussed.
ContributorsSeidel, Sam (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
166056-Thumbnail Image.png
Description
Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel, was designed to address this problem. Our clothes were made

Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel, was designed to address this problem. Our clothes were made with fabric scraps or donated textiles that would otherwise end up in landfills. The mission of our business was to develop trendy and sustainable apparel that helped to eliminate textile waste while staying on brand with current fashion trends.
ContributorsEspinosa, Karly (Author) / Bolas, Brandon (Co-author) / Schalla, Freya (Co-author) / Rebe, Breanna (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
165699-Thumbnail Image.png
Description
Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel, was designed to address this problem. Our clothes were made

Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel, was designed to address this problem. Our clothes were made with fabric scraps or donated textiles that would otherwise end up in landfills. The mission of our business was to develop trendy and sustainable apparel that helped to eliminate textile waste while staying on brand with current fashion trends.
ContributorsSchalla, Freya (Author) / Bolas, Brandon (Co-author) / Espinosa, Karly (Co-author) / Rebe, Breanna (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Balven, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Criminology and Criminal Justice (Contributor) / Department of Psychology (Contributor)
Created2022-05