Matching Items (12)
Filtering by

Clear all filters

156390-Thumbnail Image.png
Description
This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users.

This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.
ContributorsVale, Nicholas Marshall (Author) / Polygerinos, Panagiotis (Thesis advisor) / Zhang, Wenlong (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
133548-Thumbnail Image.png
Description
Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of the residual limb. However, this is time consuming. These painful/functional issues demand a prosthetic socket with an adjustable interface that can adapt to the user's needs. This thesis presents a prototype design for a dynamic soft robotic interface which addresses this need. The actuators are adjustable depending on the user's activity level, and their structure provides targeted compression to the soft tissue which helps to limit movement of the bone relative to the socket. The engineering process was used to create this design by defining system level requirements, exploring the design space, selecting a design, and then using testing/analysis to optimize that design. The final design for the soft robotic interface meets the applicable requirements, while other requirements for the electronics/controls will be completed as future work. Testing of the prototype demonstrated promising potential for the design with further refinement. Work on this project should be continued in future research/thesis projects in order to create a viable consumer product which can improve lower limb amputee's quality of life.
ContributorsHolmes, Breanna Swift (Author) / Zhang, Wenlong (Thesis director) / Polygerinos, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
189391-Thumbnail Image.png
Description
Robotic technology can be broadly categorized into two main approaches based on the compliance of the robot's materials and structure: hard and soft. Hard, traditional robots, with mechanisms to transmit forces, provide high degrees of freedom (DoFs) and precise manipulation, making them commonly used in industry and academic research. The

Robotic technology can be broadly categorized into two main approaches based on the compliance of the robot's materials and structure: hard and soft. Hard, traditional robots, with mechanisms to transmit forces, provide high degrees of freedom (DoFs) and precise manipulation, making them commonly used in industry and academic research. The field of soft robotics, on the other hand, is a new trend from the past three decades of robotics that uses soft materials such as silicone or textiles as the body or material base instead of the rigid bodies used in traditional robots. Soft robots are typically pre-programmed with specific geometries, and perform well at tasks such as human-robot interaction, locomotion in complex environments, and adaptive reconfiguration to the environment, which reduces the cost of future programming and control. However, full soft robotic systems are often less mobile due to their actuation --pneumatics, high-voltage electricity or magnetics -- even if the robot itself is at a millimeter or centimeter scale. Rigid or hard robots, on the other hand, can often carry the weight of their own power, but with a higher burden of cost for control and sensing. A middle ground is thus sought, to combine soft robotics technologies with rigid robots, by implementing mechanism design principles with soft robots to embed functionalities or utilize soft robots as the actuator on a rigid robotic system towards an affordable robotic system design. This dissertation showcases five examples of this design principle with two main research branches: locomotion and wearable robotics. In the first research case, an example of how a miniature swimming robot can navigate through a granular environment using compliant plates is presented, compared to other robots that change their shape or use high DoF mechanisms. In the second pipeline, mechanism design is implemented using soft robotics concepts in a wearable robot. An origami-inspired, soft "exo-shell", that can change its stiffness on demand, is introduced. As a follow-up to this wearable origami-inspired robot, a geometry-based, ``near" self-locking modular brake is then presented. Finally, upon combining the origami-inspired wearable robot and brake design, a concept of a modular wearable robot is showcased for the purpose of answering a series of biomechanics questions.
ContributorsLi, Dongting (Author) / Aukes, Daniel M (Thesis advisor) / Sugar, Thomas G (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2023
171660-Thumbnail Image.png
Description
With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies

With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies lower coverage and/or raise prices of plans with sufficient coverage, it can be expected that the proportion of uninsured/under insured to fully insured people will rise. To address this, lower cost alternative methods of treatment must be developed so people can obtain the treated required for a sufficient recovery. The presented robotic glove employs low cost fabric soft pneumatic actuators which use a closed loop feedback controller based on readings from embedded soft sensors. This provides the device with proprioceptive abilities for the dynamic control of each independent actuator. Force and fatigue tests were performed to determine the viability of the actuator design. A Box and Block test along with a motion capture study was completed to study the performance of the device. This paper presents the design and classification of a soft robotic glove with a feedback controller as a at-home stroke rehabilitation device.
ContributorsAxman, Reed C (Author) / Zhang, Wenlong (Thesis advisor) / Santello, Marco (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2022
157533-Thumbnail Image.png
Description
Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer

Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer for human interactions, more robust in unknown environments and simpler to control than their rigid counterparts. A current problem in soft robotics is the lack of seamless integration of soft grippers into wearable devices, which is in part due to the use of elastomeric materials used for the creation of most of these grippers. This work introduces fabric-reinforced textile actuators (FRTA). The selection of materials, design logic of the fabric reinforcement layer and fabrication method are discussed. The relationship between the fabric reinforcement characteristics and the actuator deformation is studied and experimentally verified. The FRTA are made of a combination of a hyper-elastic fabric material with a stiffer fabric reinforcement on top. In this thesis, the design, fabrication, and evaluation of FRTAs are explored. It is shown that by varying the geometry of the reinforcement layer, a variety of motion can be achieve such as axial extension, radial expansion, bending, and twisting along its central axis. Multi-segmented actuators can be created by tailoring different sections of fabric-reinforcements together in order to generate a combination of motions to perform specific tasks. The applicability of this actuators for soft grippers is demonstrated by designing and providing preliminary evaluation of an anthropomorphic soft robotic hand capable of grasping daily living objects of various size and shapes.
ContributorsLopez Arellano, Francisco Javier (Author) / Santello, Marco (Thesis advisor) / Zhang, Wenlong (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
158505-Thumbnail Image.png
Description
The term Poly-Limb stems from the rare birth defect syndrome, called Polymelia. Although Poly-Limbs in nature have often been nonfunctional, humans have had the fascination of functional Poly-Limbs. Science fiction has led us to believe that having Poly-Limbs leads to augmented manipulation abilities and higher work efficiency. To bring this

The term Poly-Limb stems from the rare birth defect syndrome, called Polymelia. Although Poly-Limbs in nature have often been nonfunctional, humans have had the fascination of functional Poly-Limbs. Science fiction has led us to believe that having Poly-Limbs leads to augmented manipulation abilities and higher work efficiency. To bring this to life however, requires a synergistic combination between robot manipulation and wearable robotics. Where traditional robots feature precision and speed in constrained environments, the emerging field of soft robotics feature robots that are inherently compliant, lightweight, and cost effective. These features highlight the applicability of soft robotic systems to design personal, collaborative, and wearable systems such as the Soft Poly-Limb.

This dissertation presents the design and development of three actuator classes, made from various soft materials, such as elastomers and fabrics. These materials are initially studied and characterized, leading to actuators capable of various motion capabilities, like bending, twisting, extending, and contracting. These actuators are modeled and optimized, using computational models, in order to achieve the desired articulation and payload capabilities. Using these soft actuators, modular integrated designs are created for functional tasks that require larger degrees of freedom. This work focuses on the development, modeling, and evaluation of these soft robot prototypes.

In the first steps to understand whether humans have the capability of collaborating with a wearable Soft Poly-Limb, multiple versions of the Soft Poly-Limb are developed for assisting daily living tasks. The system is evaluated not only for performance, but also for safety, customizability, and modularity. Efforts were also made to monitor the position and orientation of the Soft Poly-Limbs components through embedded soft sensors and first steps were taken in developing self-powered compo-nents to bring the system out into the world. This work has pushed the boundaries of developing high powered-to-weight soft manipulators that can interact side-by-side with a human user and builds the foundation upon which researchers can investigate whether the brain can support additional limbs and whether these systems can truly allow users to augment their manipulation capabilities to improve their daily lives.
ContributorsNguyen, Pham Huy (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2020
158364-Thumbnail Image.png
Description
Current exosuit technologies utilizing soft inflatable actuators for gait assistance have drawbacks of having slow dynamics and limited portability. The first part of this thesis focuses on addressing the aforementioned issues by using inflatable actuator composites (IAC) and a portable pneumatic source. Design, fabrication and finite element modeling of the

Current exosuit technologies utilizing soft inflatable actuators for gait assistance have drawbacks of having slow dynamics and limited portability. The first part of this thesis focuses on addressing the aforementioned issues by using inflatable actuator composites (IAC) and a portable pneumatic source. Design, fabrication and finite element modeling of the IAC are presented. Volume optimization of the IAC is done by varying its internal volume using finite element methods. A portable air source for use in pneumatically actuated wearable devices is also presented. Evaluation of the system is carried out by analyzing its maximum pressure and flow output. Electro-pneumatic setup, design and fabrication of the developed air source are also shown. To provide assistance to the user using the exosuit in appropriate gait phases, a gait detection system is needed. In the second part of this thesis, a gait sensing system utilizing soft fabric based inflatable sensors embedded in a silicone based shoe insole is developed. Design, fabrication and mechanical characterization of the soft gait detection sensors are given. In addition, integration of the sensors, each capable of measuring loads of 700N in a silicone based shoe insole is also shown along with its possible application in detection of various gait phases. Finally, a possible integration of the actuators, air source and gait detection shoes in making of a portable soft exosuit for knee assistance is given.
Contributorspoddar, souvik (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
161712-Thumbnail Image.png
Description
This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low

This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low weight, affordable manufacturing cost and a fast prototyping process -- a wider range of actuators is available to these mechanisms, while modeling their behavior requires less computational cost.The fundamental question this dissertation strives to answer is how to decode and leverage the effect of material stiffness in these robots. These robots' stiffness is relatively limited due to their slender design, specifically at larger scales. While compliant robots may have inherent advantages such as being safer to work around, this low rigidity makes modeling more complex. This complexity is mostly contained in material deformation since the conventional actuators such as servo motors can be easily leveraged in these robots. As a result, when introduced to real-world environments, efficient modeling and control of these robots are more achievable than conventional soft robots. Various approaches have been taken to design, model, and control a variety of laminate robot platforms by investigating the effect of material deformation in prototypes while they interact with their working environments. The results obtained show that data-driven approaches such as experimental identification and machine learning techniques are more reliable in modeling and control of these mechanisms. Also, machine learning techniques for training robots in non-ideal experimental setups that encounter the uncertainties of real-world environments can be leveraged to find effective gaits with high performance. Our studies on the effect of stiffness of thin, curved sheets of materials has evolved into introducing a new class of soft elements which we call Soft, Curved, Reconfigurable, Anisotropic Mechanisms (SCRAMs). Like bio-mechanical systems, SCRAMs are capable of re-configuring the stiffness of curved surfaces to enhance their performance and adaptability. Finally, the findings of this thesis show promising opportunities for foldable robots to become an alternative for conventional soft robots since they still offer similar advantages in a fraction of computational expense.
ContributorsSharifzadeh, Mohammad (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161597-Thumbnail Image.png
Description
This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during

This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments were performed with healthy participants: 1) to measure lateral ankle support during quiet standing, 2) to determine lateral ankle support during walking over compliant surfaces, and 3) to evaluate plantarflexion assistance at push-off during treadmill walking, and 4) determine if the SR-AFO could be used for gait entrainment. Group results revealed increased ankle stiffness during quiet standing with the MAVS active, reduced ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort from the SOL and GAS during 40 - 60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with healthy participants, and a drastically increased basin of entrainment, which suggests a capability to help restore the gait of impaired users in future trials. The ff-PAM actuators were used in an X-orientation to assist the hip in flexion and extension. The Soft Robotic Hip Exosuit (SR-HExo) was evaluated using the same set of actuators and trials with healthy participants showed reduction in muscle effort during hip flexion and extension to further enhance the study of soft fabric actuators on human gait assistance.
ContributorsThalman, Carly Megan (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
131400-Thumbnail Image.png
Description
For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods

For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods of fabric reinforced textile actuators (FRTAs) have their design expanded. Original design changes to the actuators that improve their performance are detailed in this report. This report also includes an explanation of how the FRTA’s are made, explaining step by step how to make each sub-assembly and explain its function. Comparisons between the presented module and the function of the soft poly limb from previous works are also expanded. Various forms of testing, such as force testing, range of motion testing, and stiffness testing are conducted on the soft robotic module to provide insights into its performance and characteristics. Lastly, present plans for various forms of future work and integration of the soft robotic module into a full soft robotic arm assembly are discussed.
ContributorsSeidel, Sam (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05