Matching Items (8)
Filtering by

Clear all filters

134557-Thumbnail Image.png
Description
Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a symptom of a medical condition; many cases cannot be given

Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a symptom of a medical condition; many cases cannot be given a definite diagnosis which renders the condition difficult to treat. The estimated annual cost for back pain treatment amounts to $50 billion, in the United States alone. Several devices have already been designed for low back pain assistance. However, in the majority, the main drawback appears to be the rigidity of the device, which limits flexibility and comfort. Soft pneumatic actuators have the potential to provide the appropriate applications for low back pain prior- and post-surgery rehabilitation purposes. In this work, the design and development of a soft robotic back orthotic device that has the capability to relieve back pain by assisting patients to fully achieve the upright position and stabilize the lumbosacral spine, is presented. Unlike conventional robotic assistive devices, this pneumatically actuated back orthosis provides dynamic support while being light weight, comfortable and cost affordable.
ContributorsGovin, Deven (Co-author) / Saenz, Luis (Co-author) / Polygerinos, Panagiotis (Thesis director) / Snyder, Laura (Committee member) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the

The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the development of a biomimetic nautilus using soft robotic methods. The study shows background research and discusses the methods used to develop a nautilus themed sub aquatic robot that uses a double bladder system and a pump to generate thrust for movement. The study shows how the unit would be fabricated and constructed. The study also explores why the second stage of the design failed and how it could potentially be fixed in future iterations.
ContributorsCarlson, Caleb Elijah (Author) / Polygerinos, Panagiotis (Thesis director) / Parsey, John (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133548-Thumbnail Image.png
Description
Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of the residual limb. However, this is time consuming. These painful/functional issues demand a prosthetic socket with an adjustable interface that can adapt to the user's needs. This thesis presents a prototype design for a dynamic soft robotic interface which addresses this need. The actuators are adjustable depending on the user's activity level, and their structure provides targeted compression to the soft tissue which helps to limit movement of the bone relative to the socket. The engineering process was used to create this design by defining system level requirements, exploring the design space, selecting a design, and then using testing/analysis to optimize that design. The final design for the soft robotic interface meets the applicable requirements, while other requirements for the electronics/controls will be completed as future work. Testing of the prototype demonstrated promising potential for the design with further refinement. Work on this project should be continued in future research/thesis projects in order to create a viable consumer product which can improve lower limb amputee's quality of life.
ContributorsHolmes, Breanna Swift (Author) / Zhang, Wenlong (Thesis director) / Polygerinos, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.
ContributorsShuster, Eden S. (Author) / Thanga, Jekan (Thesis director) / Asphaug, Erik (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131841-Thumbnail Image.png
Description
This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft

This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft robotic ankle-foot orthosis (SR-AFO) exosuit to aid in supporting the human ankle in the inversion/eversion directions. This design aims to assist individuals affected with chronic ankle instability (CAI) or other impairments to the ankle joint. The MAVS design is made from compliant fabric materials, layered and constrained by thin rigid retainers to prevent volume increase during actuation. The design was optimized to provide the greatest stiffness and least deflection for a beam positioned as a cantilever with a point load. The design of the MAVS took into account passive stiffness of the actuator when combining rigid and compliant materials so that stiffness is maximized when inflated and minimal when passive. An analytic model of the MAVS was created to evaluate the effects in stiffness observed by varying the ratio in length between the rigid pieces and the soft actuator. The results from the analytic model were compared to experimentally obtained results of the MAVS. The MAVS with the greatest stiffness was observed when the gap between the rigid retainers was smallest and the rigid retainer length was smallest. The MAVS design with the highest stiffness at 100 kPa was determined, which required 26.71 ± 0.06 N to deflect the actuator 20 mm, and a resulting stiffness of 1,335.5 N/m and 9.1% margin of error from the model predictions.
ContributorsHertzell, Tiffany (Author) / Lee, Hyunglae (Thesis director) / Sugar, Thomas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131400-Thumbnail Image.png
Description
For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods

For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods of fabric reinforced textile actuators (FRTAs) have their design expanded. Original design changes to the actuators that improve their performance are detailed in this report. This report also includes an explanation of how the FRTA’s are made, explaining step by step how to make each sub-assembly and explain its function. Comparisons between the presented module and the function of the soft poly limb from previous works are also expanded. Various forms of testing, such as force testing, range of motion testing, and stiffness testing are conducted on the soft robotic module to provide insights into its performance and characteristics. Lastly, present plans for various forms of future work and integration of the soft robotic module into a full soft robotic arm assembly are discussed.
ContributorsSeidel, Sam (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132656-Thumbnail Image.png
Description
For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric

For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric arm, the fabric Soft Poly Limb (fSPL). For both arms I was responsible for the design of 3D printed components (molds, end caps, etc.) as well as the evaluation of the completed prototypes by comparing the actual performance of the arms to the finite element predictions. I contributed to the writing of two published papers describing the design and evaluation of the two arms. After the completion of the fSPL I attempted to create a quasi-static model of the actuators driving the fSPL.
ContributorsSparks, Curtis Mitchell (Author) / Sugar, Thomas (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional torque at the ankle joint, previous studies have exhibited consistent gait entrainment to both rigid and soft robotic devices. This entrainment is characterized by consistent phase locking of plantarflexion perturbations to the ‘push off’ event within the gait cycle. However, it is unclear whether such phase locking can be attributed to the plantarflexion assistance from the device or the sensory stimulus of movement at the ankle. To clarify the mechanism of entrainment, an experiment was designed to expose the user to a multitude of varying torques applied at the ankle to assist with plantar flexion. In this experiment, no significant difference in success of subject entrainment occurred when additional torque applied was greater than a detectable level. Force applied at the ankle varied from ~60N to ~130N. This resulted in successful entrainment ~88\% of the time at 98 N, with little to no increase in success as force increased thereafter. Alternatively, success of trials decreased significantly as force was reduced below this level, causing the perturbations to become undetectable by participants. Ultimately this suggests that higher levels of actuator pressure, and thus greater levels of torque applied to the foot, do not increase the likelihood of entrainment during walking. Rather, the results of this study suggest that proper detectable sensory stimulus is the true mechanism for entrainment.

ContributorsKruse, Anna (Author) / Lee, Hyunglae (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-12