Matching Items (17)

132656-Thumbnail Image.png

DEVELOPMENT OF A SOFT ROBOTIC THIRD ARM

Description

For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the

For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric arm, the fabric Soft Poly Limb (fSPL). For both arms I was responsible for the design of 3D printed components (molds, end caps, etc.) as well as the evaluation of the completed prototypes by comparing the actual performance of the arms to the finite element predictions. I contributed to the writing of two published papers describing the design and evaluation of the two arms. After the completion of the fSPL I attempted to create a quasi-static model of the actuators driving the fSPL.

Contributors

Agent

Created

Date Created
2019-05

133548-Thumbnail Image.png

Design, Characterization, and Evaluation of a Dynamic Soft Robotic Prosthetic Socket Interface

Description

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of the residual limb. However, this is time consuming. These painful/functional issues demand a prosthetic socket with an adjustable interface that can adapt to the user's needs. This thesis presents a prototype design for a dynamic soft robotic interface which addresses this need. The actuators are adjustable depending on the user's activity level, and their structure provides targeted compression to the soft tissue which helps to limit movement of the bone relative to the socket. The engineering process was used to create this design by defining system level requirements, exploring the design space, selecting a design, and then using testing/analysis to optimize that design. The final design for the soft robotic interface meets the applicable requirements, while other requirements for the electronics/controls will be completed as future work. Testing of the prototype demonstrated promising potential for the design with further refinement. Work on this project should be continued in future research/thesis projects in order to create a viable consumer product which can improve lower limb amputee's quality of life.

Contributors

Agent

Created

Date Created
2018-05

131841-Thumbnail Image.png

Design and Fabrication of Pneumatic Actuators for a Soft Ankle Foot Orthosis

Description

This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces.

This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft robotic ankle-foot orthosis (SR-AFO) exosuit to aid in supporting the human ankle in the inversion/eversion directions. This design aims to assist individuals affected with chronic ankle instability (CAI) or other impairments to the ankle joint. The MAVS design is made from compliant fabric materials, layered and constrained by thin rigid retainers to prevent volume increase during actuation. The design was optimized to provide the greatest stiffness and least deflection for a beam positioned as a cantilever with a point load. The design of the MAVS took into account passive stiffness of the actuator when combining rigid and compliant materials so that stiffness is maximized when inflated and minimal when passive. An analytic model of the MAVS was created to evaluate the effects in stiffness observed by varying the ratio in length between the rigid pieces and the soft actuator. The results from the analytic model were compared to experimentally obtained results of the MAVS. The MAVS with the greatest stiffness was observed when the gap between the rigid retainers was smallest and the rigid retainer length was smallest. The MAVS design with the highest stiffness at 100 kPa was determined, which required 26.71 ± 0.06 N to deflect the actuator 20 mm, and a resulting stiffness of 1,335.5 N/m and 9.1% margin of error from the model predictions.

Contributors

Agent

Created

Date Created
2020-05

134557-Thumbnail Image.png

Design and Development of the Soft Robotic Back Orthosis

Description

Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a

Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a symptom of a medical condition; many cases cannot be given a definite diagnosis which renders the condition difficult to treat. The estimated annual cost for back pain treatment amounts to $50 billion, in the United States alone. Several devices have already been designed for low back pain assistance. However, in the majority, the main drawback appears to be the rigidity of the device, which limits flexibility and comfort. Soft pneumatic actuators have the potential to provide the appropriate applications for low back pain prior- and post-surgery rehabilitation purposes. In this work, the design and development of a soft robotic back orthotic device that has the capability to relieve back pain by assisting patients to fully achieve the upright position and stabilize the lumbosacral spine, is presented. Unlike conventional robotic assistive devices, this pneumatically actuated back orthosis provides dynamic support while being light weight, comfortable and cost affordable.

Contributors

Agent

Created

Date Created
2017-05

Design and Fabrication of Soft Robotic Nautilus

Description

The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and

The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the development of a biomimetic nautilus using soft robotic methods. The study shows background research and discusses the methods used to develop a nautilus themed sub aquatic robot that uses a double bladder system and a pump to generate thrust for movement. The study shows how the unit would be fabricated and constructed. The study also explores why the second stage of the design failed and how it could potentially be fixed in future iterations.

Contributors

Agent

Created

Date Created
2017-05

Adaptive Technologies using Soft Robotic Bladders

Description

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.

Contributors

Agent

Created

Date Created
2016-05

131400-Thumbnail Image.png

The Design, Fabrication, and Testing of a New Design of Soft Robotic Module Using Knit FRTAs

Description

For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be

For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods of fabric reinforced textile actuators (FRTAs) have their design expanded. Original design changes to the actuators that improve their performance are detailed in this report. This report also includes an explanation of how the FRTA’s are made, explaining step by step how to make each sub-assembly and explain its function. Comparisons between the presented module and the function of the soft poly limb from previous works are also expanded. Various forms of testing, such as force testing, range of motion testing, and stiffness testing are conducted on the soft robotic module to provide insights into its performance and characteristics. Lastly, present plans for various forms of future work and integration of the soft robotic module into a full soft robotic arm assembly are discussed.

Contributors

Agent

Created

Date Created
2020-05

Soft Actuators for Miniature and Untethered Soft Robots Using Stimuli-Responsive Hydrogels

Description

Soft robots currently rely on additional hardware such as pumps, high voltage supplies,light generation sources, and magnetic field generators for their operation. These components
resist miniaturization; thus, embedding them into small-scale soft robots is challenging.
This issue limits their applications,

Soft robots currently rely on additional hardware such as pumps, high voltage supplies,light generation sources, and magnetic field generators for their operation. These components
resist miniaturization; thus, embedding them into small-scale soft robots is challenging.
This issue limits their applications, especially in hyper-redundant mobile robots. This
dissertation aims at addressing some of the challenges associated with creating miniature,
untethered soft robots that can function without any attachment to external power supplies
or receiving any control signals from outside sources. This goal is accomplished by introducing
a soft active material and a manufacturing method that together, facilitate the
miniaturization of soft robots and effectively supports their autonomous, mobile operation
without any connection to outside equipment or human intervention.
The soft active material presented here is a hydrogel based on a polymer called poly(Nisopropylacrylamide)
(PNIPAAm). This hydrogel responds to changes in the temperature
and responds by expanding or contracting. A major challenge regarding PNIPAAm-based
hydrogels is their slow response. This challenge is addressed by introducing a mixedsolvent
photo-polymerization technique that alters the pore structure of the hydrogel and
facilitates the water transport and thus the rate of volume change. Using this technique,
the re-swelling response time of hydrogels is reduced to 2:4min – over 25 times faster
than hydrogels demonstrated previously. The material properties of hydrogels including
their response rate and Young’s modulus are tuned simultaneously. The one-step photopolymerization
using UV light is performed in under 15 sec, which is a significant improvement
over thermo-polymerization, which takes anywhere between a few minutes to
several hours. Photopolymerization is key towards simplifying recipes, improving access
to these techniques, and making them tractable for iterative design processes.
To address the manufacturing challenges, soft voxel actuators (SVAs) are presented.
SVAs are actuated by electrical currents through Joule heating. SVAs weighing only 100 mg require small footprint microcontrollers for their operation which can be embedded
in the robotic system. The advantages of hydrogel-based SVAs are demonstrated through
different robotic platforms namely a hyper-redundant manipulator with 16 SVAs, an untethered
miniature robot for mobile underwater applications using 8 SVAs, and a gripper
using 32 SVAs.

Contributors

Agent

Created

Date Created
2021

156390-Thumbnail Image.png

User Intent Detection and Control of a Soft Poly-Limb

Description

This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe

This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.

Contributors

Agent

Created

Date Created
2018

161712-Thumbnail Image.png

Model Driven Design Optimization and Gait Selection of Compliant Foldable Robots

Description

This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various

This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low weight, affordable manufacturing cost and a fast prototyping process -- a wider range of actuators is available to these mechanisms, while modeling their behavior requires less computational cost.The fundamental question this dissertation strives to answer is how to decode and leverage the effect of material stiffness in these robots. These robots' stiffness is relatively limited due to their slender design, specifically at larger scales. While compliant robots may have inherent advantages such as being safer to work around, this low rigidity makes modeling more complex. This complexity is mostly contained in material deformation since the conventional actuators such as servo motors can be easily leveraged in these robots. As a result, when introduced to real-world environments, efficient modeling and control of these robots are more achievable than conventional soft robots.
Various approaches have been taken to design, model, and control a variety of laminate robot platforms by investigating the effect of material deformation in prototypes while they interact with their working environments. The results obtained show that data-driven approaches such as experimental identification and machine learning techniques are more reliable in modeling and control of these mechanisms. Also, machine learning techniques for training robots in non-ideal experimental setups that encounter the uncertainties of real-world environments can be leveraged to find effective gaits with high performance. Our studies on the effect of stiffness of thin, curved sheets of materials has evolved into introducing a new class of soft elements which we call Soft, Curved, Reconfigurable, Anisotropic Mechanisms (SCRAMs). Like bio-mechanical systems, SCRAMs are capable of re-configuring the stiffness of curved surfaces to enhance their performance and adaptability. Finally, the findings of this thesis show promising opportunities for foldable robots to become an alternative for conventional soft robots since they still offer similar advantages in a fraction of computational expense.

Contributors

Agent

Created

Date Created
2021