Matching Items (4)
Filtering by

Clear all filters

136157-Thumbnail Image.png
Description
Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence

Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence of CCD. Fungicides have received less research attention compared to insecticides, despite the fact that fungicide application coincides with bloom and the presence of bees. Pristine fungicide is widely used in agriculture and is commonly found as a residue in hives. Several studies have concluded that Pristine can be used without harming bees, but reports of brood loss following Pristine application continue to surface across the country. The primary objectives of this study were to determine whether Pristine causes an aversive gustatory response in bees and whether consumption of an acute dose affects responsiveness to sucrose. An awareness of how foragers interact with contaminated food is useful to understand the likelihood that Pristine is ingested and how that may affect bees' ability to evaluate floral resources. Our results indicated that Pristine has no significant effect on gustatory response or sucrose responsiveness. There was no significant difference between bee responses to Pristine contaminated sucrose and sucrose alone, and no significant effect of Pristine on sucrose responsiveness. These results indicate that honey bees do not have a gustatory aversion to Pristine. A lack of aversion means that honey bees will continue collecting contaminated resources and dispersing them throughout the colony where it can affect brood and clean food stores.
ContributorsMcHugh, Cora Elizabeth (Co-author) / Jernigan, Christopher (Co-author, Committee member) / Burden, Christina (Co-author) / DeGrandi-Hoffman, Gloria (Co-author) / Smith, Brian (Thesis director) / Fewell, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2015-05
132471-Thumbnail Image.png
Description
Studies of cooperation remain an important aspect in understanding the evolution of social cues and interactions. One example of cooperation is pleometrosis, an associative behavior of forming a colony with two unrelated, fertile queens. However, most ant species display haplometrosis, the founding of a colony by a single queen. In

Studies of cooperation remain an important aspect in understanding the evolution of social cues and interactions. One example of cooperation is pleometrosis, an associative behavior of forming a colony with two unrelated, fertile queens. However, most ant species display haplometrosis, the founding of a colony by a single queen. In these associations, the queen typically rejects cooperation. In populations of Pogonomyrmex californicus, both pleometrosis and haplometrosis exists. It is not clear how associative -metrosis became a practiced behavior since haplometrotic queens tend to fight. However, as fighting in pleometrotic queens became less frequent, this induces benefit, in terms of cost savings, in having associative behaviors. The hypothesis tested was nest excavation of pleometrotic queens show sociality, while haplometrotic queens show association independence. Isolated pleometrotic queens (P) showed low excavation rate at 2.72cm2/day, compared to the rate when the task was shared in (PP) nests, 4.57cm2/day. Nest area of the (P) queens were also affected during days 3 and 4 of the experiment, where there was presence of nest area decrease. Furthermore, the excavation session of (P) was the only one determined as significant between all other nests. Although the (P) queens have low values, they eventually reach a similar point as the other nests by day 6. However, the lack of haste in excavation leads to longer exposure to the elements, substituting the risk of losing cuticles in excavation for the risk of predation. For the haplometrotic queens, nests of (H) and (HH) displayed no significant difference in excavation values, leading to having social effect in their association.
ContributorsGabriel, Ian Paulo Villalobos (Author) / Fewell, Jennifer (Thesis director) / Pratt, Stephen (Committee member) / Bespalova, Ioulia (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137061-Thumbnail Image.png
Description
I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic

I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic queens would have an advantage of cooperating together in reproducing more workers quicker than the other conditions to make up for the lost workers. This would demonstrate a benefit that pleometrosis has over haplometrosis for mature colonies, which would explain why pleometrosis continues for P.californicus after colony foundation. After removing all but twenty workers for every colony, I took pictures and counted the emerging brood for 52 days. Analyses showed that the paired pleometrotic queens and the haplometrotic queens both grew at an equally efficient rate and the paired pleometrotic and haplometrotic queens growing the least efficiently. However, the results were not significant and did not support the hypothesis that paired pleometrotic queens recover from worker loss more proficiently than other social systems.
ContributorsFernandez, Marisa Raquel (Author) / Fewell, Jennifer (Thesis director) / Gadau, Juergen (Committee member) / Haney, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor)
Created2014-05
135527-Thumbnail Image.png
Description
This project aims to better understand aggression in a cooperative social system, specifically within the ant species Pogonomyrmex Californicus. The queens of some populations of these ants form cooperative associations of unrelated queens during nest foundation, while others prefer to form solitary nests and may show aggression towards unwanted nest

This project aims to better understand aggression in a cooperative social system, specifically within the ant species Pogonomyrmex Californicus. The queens of some populations of these ants form cooperative associations of unrelated queens during nest foundation, while others prefer to form solitary nests and may show aggression towards unwanted nest mates. Because it is difficult to collect large amounts of data from a wild population and laboratory environments cannot capture the scale of nature, we created a computer simulation based on data collected in the lab and the field that emulates the life cycle of this species of ants. By manipulating behavioral and environmental conditions and observing the results we were able to better understand the advantages and disadvantages of showing aggression in this cooperative social system.
Created2016-05