Matching Items (13)
Filtering by

Clear all filters

133334-Thumbnail Image.png
Description
Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control

Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control and build management system created for spacecraft engineers at ASU to record each step of their engineering processes. In-house development means ICDB is more precisely designed around its users' functionality and cost requirements than most off-the-shelf commercial offerings. By placing a complex relational database behind an intuitive web application, ICDB enables organizations and their users to create and store parts libraries, assembly designs, purchasing and location records for inventory items, and more.
ContributorsNoss, Karl Friederich (Author) / Davulcu, Hasan (Thesis director) / Rios, Ken (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132867-Thumbnail Image.png
Description
The objective of this project was the creation of a web app for undergraduate CIS/BDA students which allows them to search for jobs based on criteria that are not always directly available with the average job search engine. This includes technical skills, soft skills, location and industry. This

The objective of this project was the creation of a web app for undergraduate CIS/BDA students which allows them to search for jobs based on criteria that are not always directly available with the average job search engine. This includes technical skills, soft skills, location and industry. This creates a more focused way for these students to search for jobs using an application that also attempts to exclude positions that are looking for very experienced employees. The activities used for this project were chosen in attempt to make as many of the processes as automatable as possible.
This was achieved by first using offline explorer, an application that can download websites, to gather job postings from Dice.com that were searched by a pre-defined list of technical skills. Next came the parsing of the downloaded postings to extract and clean the data that was required and filling a database with that cleaned data. Then the companies were matched up with their corresponding industries. This was done using their NAICS (North American Industry Classification System) codes. The descriptions were then analyzed, and a group of soft skills was chosen based on the results of Word2Vec (a group of models that assists in creating word embeddings). A master table was then created by combining all of the tables in the database. The master table was then filtered down to exclude posts that required too much experience. Lastly, the web app was created using node.js as the back-end. This web app allows the user to choose their desired criteria and navigate through the postings that meet their criteria.
ContributorsHenry, Alfred (Author) / Darcy, David (Thesis director) / Moser, Kathleen (Committee member) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

ContributorsSmith, Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
Description

Anthemy is a web app that I created so that Spotify users could connect with other uses and see their listening statistics. The app has a chat feature that matches concurrent users based on a variety of search criteria, as well as a statistics page that contains a breakdown of

Anthemy is a web app that I created so that Spotify users could connect with other uses and see their listening statistics. The app has a chat feature that matches concurrent users based on a variety of search criteria, as well as a statistics page that contains a breakdown of a user's top artists, songs, albums, and genres as well as a detailed breakdown of each of their liked playlists.

ContributorsJackman, Benjamin (Author) / Roumina, Kavous (Thesis director) / Mazzola, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2021-12
161191-Thumbnail Image.png
ContributorsJackman, Benjamin (Author) / Roumina, Kavous (Thesis director) / Mazzola, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2021-12
161192-Thumbnail Image.png
ContributorsJackman, Benjamin (Author) / Roumina, Kavous (Thesis director) / Mazzola, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2021-12
132263-Thumbnail Image.png
Description
Karate is a Japanese martial art that originated approximately a century ago, with heavy influence from Chinese martial arts at the time. Although it was originally created as a form of self-defense, many today practice it for sport. Organizations such as the World Karate Federation (WKF) and USA Karate establish

Karate is a Japanese martial art that originated approximately a century ago, with heavy influence from Chinese martial arts at the time. Although it was originally created as a form of self-defense, many today practice it for sport. Organizations such as the World Karate Federation (WKF) and USA Karate establish rules for competitions as well as host tournaments for practitioners of all ages and skill levels to participate in. Dojos will often host small, local tournaments for their students to practice and sharpen their competition skills. Smaller tournaments often do not have the same tools and technologies that larger tournaments do. Sign-ups are typically done in-person and payments are cash-only, which can be inconvenient for those who are extremely busy or forgetful. Another issue with hosting local tournaments is that the software used to run the timer is a desktop application, called Karate Semaphore. In the case of technical difficulties, installing the software on another machine can be extremely time-consuming and delay the progression of the tournament. Not to mention, Karate Semaphore was created following the 2012 WKF rules—meaning it is currently out of date, as it does not contain any features supporting new rules.
For my creative project, I designed a website through which smaller, local tournament registration and management are possible. Users can register for tournaments through the registration page. Registered users can check their registration is successful by viewing a table of all competitors. If the list of competitors is too long, they can filter results based on search criteria. Tournament management will be possible via a functioning timer following WKF rules which keeps track of both the match’s score as well as time.
ContributorsRuan, Shirley (Author) / Sarwat, Mohamed (Thesis director) / Chen, Yinong (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05