Matching Items (2)
Filtering by

Clear all filters

155947-Thumbnail Image.png
Description
In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has

In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has two springs: one mimicking Achilles tendon and the other mimicking Anterior-Tibialis tendon. The dynamics of the prosthetic ankle is discussed and simulated using Working model 2D. The simulation results are used to optimize the springs stiffness. Two experiments are conducted using the developed ankle to verify the simulation It is found that this novel ankle design is better than Solid Ankle Cushioned Heel (SACH) foot. The experimental data is used to find the tendon and muscle activation forces of the subject wearing the prosthesis using OpenSim. A conclusion is included along with suggested future work.
ContributorsBhat, Sandesh Ganapati (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Lee, Hyuglae (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2017
168588-Thumbnail Image.png
Description
Mechanical impedance is a concept that is used to model biomechanical propertiesof human joints. These models can then be utilized to provide insight into the inner workings of the human neuromuscular system or to provide insight into how to best design controllers for robotic applications that either attempt to mimic capabilities of the

Mechanical impedance is a concept that is used to model biomechanical propertiesof human joints. These models can then be utilized to provide insight into the inner workings of the human neuromuscular system or to provide insight into how to best design controllers for robotic applications that either attempt to mimic capabilities of the human neuromuscular system or physically interact with it. To further elucidate patterns and properties of how the human neuromuscular system modulates mechanical impedance at the human ankle joint, multiple studies were conducted. The first study was to assess the ability of linear regression models to characterize the change in stiffness - a component of mechanical impedance - seen at the human ankle during the stance phase of walking in the Dorsiflexion-Plantarflexion (DP) direction. A collection of biomechanical variables were used as input variables. The R^2 value of the best performing model was 0.71. The second and third studies were performed to showcase the ability of a newly developed twin dual-axis platform, which goes beyond the limits of a single dual-axis platform, to quantify bilateral stiffness properties. The second study quantified the bilateral mechanical stiffness of the human ankle joint for healthy able-bodied subjects during the stance phase of walking and during quiet standing in both the DP and inversion-eversion directions. Subjects showed a high level of subject specific symmetry. Lastly, a similar bilateral ankle characterization study was conducted on a set of subjects with multiple sclerosis, but only during quiet standing and in the DP direction. Results showed a high level of discrepancy between the subject’s most-affected and least-affected limbs with a larger range and variance than in the healthy population.
ContributorsRussell, Joshua (Author) / Lee, Hyunglae (Thesis advisor) / Honeycutt, Claire (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2022