Matching Items (4)
Filtering by

Clear all filters

156147-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Here, patterns of arm joint control during daily functional tasks were examined, which are performed through rotation

The ultimate goal of human movement control research is to understand how natural movements performed in daily activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Here, patterns of arm joint control during daily functional tasks were examined, which are performed through rotation of the shoulder, elbow, and wrist with the use of seven DOF: shoulder flexion/extension, abduction/adduction, and internal/external rotation; elbow flexion/extension and pronation/supination; wrist flexion/extension and radial/ulnar deviation. Analyzed movements imitated two activities of daily living: combing the hair and turning the page in a book. Kinematic and kinetic analyses were conducted. The studied kinematic characteristics were displacements of the 7 DOF and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using a relationship NT = MT + GT + IT, the role of active control and the passive factors (gravitation and inter-segmental dynamics) in rotation of each joint was assessed by computing MT contribution (MTC) to NT. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite the variety of joint movements required across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of both tasks. The 3 shoulder-elbow coordination patterns during which at least one joint moves largely passively represent joint control primitives underlying performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements. The advantage of these control primitives is that they require minimal neural effort for joint coordination, and thus increase neural resources that can be used for cognitive tasks.
ContributorsMarshall, Dirk (Author) / Dounskaia, Natalia (Thesis advisor) / Schaefer, Sydney (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
156156-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the

The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the rotation of seven DOF in the arm. Analyzed movements which imitated the following 3 activities of daily living: moving an empty soda can from a table and placing it on a further position; placing the empty soda can from initial position at table to a position at shoulder level on a shelf; and placing the empty soda can from initial position at table to a position at eye level on a shelf. Kinematic and kinetic analyses were conducted for these three movements. The studied kinematic characteristics were: hand trajectory in the sagittal plane, displacements of the 7 DOF, and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using the relationship NT = MT + GT + IT, the role of active control and passive factors (gravitation and inter-segmental dynamics) in rotation of each joint by computing MT contribution (MTC) to NT was assessed. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite a variety of joint movements available across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of each task. In conclusion, it was observed that the 3 shoulder-elbow coordination patterns (during which at least one joint moved) passively represented joint control primitives, underlying the performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements.
ContributorsSansgiri, Dattaraj (Author) / Dounskaia, Natalia (Thesis advisor) / Schaefer, Sydney (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
156545-Thumbnail Image.png
Description
Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer,

Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer, despite of decades of behavioral evidence. Moreover, motor generalization is studied as a probe to understanding how movements in any novel situations are affected by previous experiences. Thus, one could assume that mechanisms underlying transfer from trained to untrained tasks may be same as the ones known to be underlying motor generalization. However, the direct relationship between transfer and generalization has not yet been shown, thereby limiting the assumption that transfer and generalization rely on the same mechanisms. The purpose of this study was to test whether there is a relationship between motor generalization and motor transfer. To date, ten healthy young adult subjects were scored on their motor generalization ability and motor transfer ability on various upper extremity tasks. Although our current sample size is too small to clearly identify whether there is a relationship between generalization and transfer, Pearson product-moment correlation results and a priori power analysis suggest that a significant relationship will be observed with an increased sample size by 30%. If so, this would suggest that the mechanisms of transfer may be similar to those of motor generalization.
ContributorsSohani, Priyanka (Author) / Schaefer, Sydney (Thesis advisor) / Daliri, Ayoub (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2018
155864-Thumbnail Image.png
Description
The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing

The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing object roll. Unexpected perturbations were

controlled by switching weights between trials, expected perturbations were controlled by

asking subjects to rotate the object themselves. In all cases subjects were able to

minimize the roll of the object within three trials. Eye fixations were correlated with

object weight for the initial context and for known shifts in center of mass. In subsequent

trials with unexpected weight shifts, subjects appeared to scan areas of interest from both

contexts even after learning present orientation.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis advisor) / Buneo, Christopher (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2017