Matching Items (10)
Filtering by

Clear all filters

151088-Thumbnail Image.png
Description
Approximately 1.7 million people in the United States are living with limb loss and are in need of more sophisticated devices that better mimic human function. In the Human Machine Integration Laboratory, a powered, transtibial prosthetic ankle was designed and build that allows a person to regain ankle function with

Approximately 1.7 million people in the United States are living with limb loss and are in need of more sophisticated devices that better mimic human function. In the Human Machine Integration Laboratory, a powered, transtibial prosthetic ankle was designed and build that allows a person to regain ankle function with improved ankle kinematics and kinetics. The ankle allows a person to walk normally and up and down stairs, but volitional control is still an issue. This research tackled the problem of giving the user more control over the prosthetic ankle using a force/torque circuit. When the user presses against a force/torque sensor located inside the socket the prosthetic foot plantar flexes or moves downward. This will help the user add additional push-off force when walking up slopes or stairs. It also gives the user a sense of control over the device.
ContributorsFronczyk, Adam (Author) / Sugar, Thomas G. (Thesis advisor) / Helms-Tillery, Stephen (Thesis advisor) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2012
153814-Thumbnail Image.png
Description
The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a

The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a larger influence on the motor state changes of another; the coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects emerge when task or biomechanical asymmetries are imputed between actors. Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were recovered through phase-amplitude modeling. Experiment 1 examined leader-follower coupling during a bidirectional task. Experiment 2 employed an additional coupling asymmetry by assigning an explicit leader and follower. Both experiment 1 and 2 demonstrated asymmetric coupling effects with increased detuning. In experiment 2, though, the explicit follower exhibited a phase lead in nearly all conditions. These results confirm that coupling direction was not determined strictly by relative phasing. A third experiment examined the question raised by the previous two, which is how could someone follow from ahead (i.e., phase lead in experiment 2). This was tested using a combination of frequency detuning and amplitude asymmetry requirements (e.g., 1:1 or 1:2 & 2:1). Results demonstrated larger amplitude movements drove the coupling towards the person with the smaller amplitude; small amplitude movements exhibited a phase lead, despite being a follower in coupling terms. These results suggest leader-follower coupling is a general property of social motor coordination. Predicting when such coupling effects occur is emphasized by the stability reducing effects of coordinating asymmetric components. Generally, the implication is role-taking is an emergent strategy of dividing up coordination stabilizing efforts unequally between actors (or limbs).
ContributorsFine, Justin (Author) / Amazeen, Eric L. (Thesis advisor) / Amazeen, Polemnia G. (Committee member) / Brewer, Gene (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2015
156718-Thumbnail Image.png
Description
Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the

Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the gait dynamic stability.

A knee exoskeleton and ankle assistive device (Robotic Shoe) are developed and used to provide walking assistance. The knee exoskeleton provides personalized knee joint assistive torque during the stance phase. The robotic shoe is a light-weighted mechanism that can store the potential energy at heel strike and release it by using an active locking mechanism at the terminal stance phase to provide push-up ankle torque and assist the toe-off. Lower-limb Kinematic time series data are collected for subjects wearing these devices in the passive and active mode. The changes of kinematics with and without these devices on lower-limb motion are first studied. Orbital stability, as one of the commonly used measure to quantify gait stability through calculating Floquet Multipliers (FM), is employed to asses the effects of these wearable devices on gait stability. It is shown that wearing the passive knee exoskeleton causes less orbitally stable gait for users, while the knee joint active assistance improves the orbital stability compared to passive mode. The robotic shoe only affects the targeted joint (right ankle) kinematics, and wearing the passive mechanism significantly increases the ankle joint FM values, which indicates less walking orbital stability. More analysis is done on a mechanically perturbed walking public data set, to show that orbital stability can quantify the effects of external mechanical perturbation on gait dynamic stability. This method can further be used as a control design tool to ensure gait stability for users of lower-limb assistive devices.
ContributorsRezayat Sorkhabadi, Seyed Mostafa (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
155864-Thumbnail Image.png
Description
The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing

The interaction between visual fixations during planning and performance in a

dexterous task was analyzed. An eye-tracking device was affixed to subjects during

sequences of null (salient center of mass) and weighted (non salient center of mass) trials

with unconstrained precision grasp. Subjects experienced both expected and unexpected

perturbations, with the task of minimizing object roll. Unexpected perturbations were

controlled by switching weights between trials, expected perturbations were controlled by

asking subjects to rotate the object themselves. In all cases subjects were able to

minimize the roll of the object within three trials. Eye fixations were correlated with

object weight for the initial context and for known shifts in center of mass. In subsequent

trials with unexpected weight shifts, subjects appeared to scan areas of interest from both

contexts even after learning present orientation.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis advisor) / Buneo, Christopher (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2017
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
135593-Thumbnail Image.png
Description
The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched

The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched direction, inducing increased error from the previous trials. Subjects returned after a 24-hour period to complete a similar protocol, but beginning with the second context and ending with the first. Interference from the first context on each day caused an increase in initial error for the second (P < 0.05). Following the rest period, subjects showed retention of the sensorimotor memory from the previous day through significantly decreased initial error (P = 3x10-6). However, subjects showed an increase in forces for each new context resulting from a sub-optimal motor strategy. Higher levels of total effort (P < 0.05) and a lack of separation between force values for opposing and non-opposing digits (P > 0.05) indicated a strategy that used more energy to complete the task, even when rates of learning appeared identical or improved. Two possible mechanisms for this lack of energy conservation have been proposed.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157994-Thumbnail Image.png
Description
This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established

This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.
ContributorsNevisipour, Masood (Author) / Honeycutt, Claire (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Abbas, James (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
158494-Thumbnail Image.png
Description
The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in

The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in lower extremity function is essential not just to advance the design and control of robots physically interacting with the human lower extremities but also in rehabilitation of humans suffering from neurodegenerative disorders.

In order to characterize the ankle mechanics and understand the underlying mechanisms that influence the neuromuscular properties of the ankle, a novel multi-axial robotic platform was developed. The robotic platform is capable of simulating various haptic environments and transiently perturbing the ankle to analyze the neuromechanics of the ankle, specifically the ankle impedance. Humans modulate ankle impedance to perform various tasks of the lower limb. The robotic platform is used to analyze the modulation of ankle impedance during postural balance and locomotion on various haptic environments. Further, various factors that influence modulation of ankle impedance were identified. Using the factors identified during environment dependent impedance modulation studies, the quantitative relationship between these factors, namely the muscle activation of major ankle muscles, the weight loading on ankle and the torque generation at the ankle was analyzed during postural balance and locomotion. A universal neuromuscular model of the ankle that quantitatively relates ankle stiffness, the major component of ankle impedance, to these factors was developed.

This neuromuscular model is then used as a basis to study the alterations caused in ankle behavior due to neurodegenerative disorders such as Multiple Sclerosis and Stroke. Pilot studies to validate the analysis of altered ankle behavior and demonstrate the effectiveness of robotic rehabilitation protocols in addressing the altered ankle behavior were performed. The pilot studies demonstrate that the altered ankle mechanics can be quantified in the affected populations and correlate with the observed adverse effects of the disability. Further, robotic rehabilitation protocols improve ankle control in affected populations as seen through functional improvements in postural balance and locomotion, validating the neuromuscular approach for rehabilitation.
ContributorsNalam, Varun (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Lockhart, Thurmon (Committee member) / Arizona State University (Publisher)
Created2020
158289-Thumbnail Image.png
Description
It has been repeatedly shown that females have lower stability and increased risk of ankle injury when compared to males participating in similar sports activities (e.g., basketball and soccer), yet sex differences in neuromuscular control of the ankle, including the modulation of ankle stiffness, and their contribution to stability remain

It has been repeatedly shown that females have lower stability and increased risk of ankle injury when compared to males participating in similar sports activities (e.g., basketball and soccer), yet sex differences in neuromuscular control of the ankle, including the modulation of ankle stiffness, and their contribution to stability remain unknown. To identify sex differences in human ankle stiffness, this study quantified 2- dimensional (2D) ankle stiffness in 20 young, healthy men and 20 young, healthy women during upright standing over a range of tasks, specifically, ankle muscle co-contraction tasks (4 levels up to 20% maximum voluntary co-contraction of ankle muscles), weight-bearing tasks (4 levels up to 90% of body weight), and ankle torque generation tasks accomplished by maintaining offset center-of-pressure (5 levels up to +6 cm to the center-of-pressure during quiet standing). A dual-axial robotic platform, capable of perturbing the ankle in both the sagittal and frontal planes and measuring the corresponding ankle torques, was used to reliably quantify the 2D ankle stiffness during upright standing. In all task conditions and in both planes of ankle motion, ankle stiffness in males was consistently greater than that in females. Among all 26 experimental conditions, all but 2 conditions in the frontal plane showed statistically significant sex differences. Further analysis on the normalized ankle stiffness scaled by weight times height suggests that while sex differences in ankle stiffness in the sagittal plane could be explained by sex differences in anthropometric factors as well as neuromuscular factors, the differences in the frontal plane could be mostly explained by anthropometric factors. This study also demonstrates that the sex differences in the sagittal plane were significantly higher as compared to those in the frontal plane. The results indicate that females have lower ankle stiffness during upright standing thereby providing the neuromuscular basis for further investigations on the correlation of ankle stiffness and the higher risk of ankle injury in females.
ContributorsAdjei, Ermyntrude (Author) / Lee, Hyunglae (Thesis advisor) / Santello, Marco (Committee member) / Lockhart, Thurmon E (Committee member) / Arizona State University (Publisher)
Created2020
153654-Thumbnail Image.png
Description
Locomotion in natural environments requires coordinated movements from multiple body parts, and precise adaptations when changes in the environment occur. The contributions of the neurons of the motor cortex underlying these behaviors are poorly understood, and especially little is known about how such contributions may differ based on the

Locomotion in natural environments requires coordinated movements from multiple body parts, and precise adaptations when changes in the environment occur. The contributions of the neurons of the motor cortex underlying these behaviors are poorly understood, and especially little is known about how such contributions may differ based on the anatomical and physiological characteristics of neurons. To elucidate the contributions of motor cortical subpopulations to movements, the activity of motor cortical neurons, muscle activity, and kinematics were studied in the cat during a variety of locomotion tasks requiring accurate foot placement, including some tasks involving both expected and unexpected perturbations of the movement environment. The roles of neurons with two types of neuronal characteristics were studied: the existence of somatosensory receptive fields located at the shoulder, elbow, or wrist of the contralateral forelimb; and the existence projections through the pyramidal tract, including fast- and slow-conducting subtypes.

Distinct neuronal adaptations between simple and complex locomotion tasks were observed for neurons with different receptive field properties and fast- and slow-conducting pyramidal tract neurons. Feedforward and feedback-driven kinematic control strategies were observed for adaptations to expected and unexpected perturbations, respectively, during complex locomotion tasks. These kinematic differences were reflected in the response characteristics of motor cortical neurons receptive to somatosensory information from different parts of the forelimb, elucidating roles for the various neuronal populations in accommodating disturbances in the environment during behaviors. The results show that anatomical and physiological characteristics of motor cortical neurons are important for determining if and how neurons are involved in precise control of locomotion during natural behaviors.
ContributorsStout, Eric (Author) / Beloozerova, Irina N (Thesis advisor) / Dounskaia, Natalia (Thesis advisor) / Buneo, Christopher A (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2015