Matching Items (11)
Filtering by

Clear all filters

157430-Thumbnail Image.png
Description
Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force

Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force platform (FDFP),

a light, rigid box immersed in water. This platform, along with a motion capture

system, can be used to characterize the kinematics and dynamics of a basilisk lizard

running on water. This could ultimately lead to robots that can run on water in a

similar manner.
ContributorsSweeney, Andrew Joseph (Author) / Marvi, Hamidreza (Thesis advisor) / Lentink, David (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
Description
For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery

For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery size should be increased. Another way is to increase the efficiency of the propellers. Previous research shows that ducting a propeller can cause an increase of up to 94 % in the thrust produced by the rotor-duct system. This research focused on developing and testing a quadcopter having a centrally ducted rotor which produces 60 % of the total system thrust and 3 other peripheral rotors. This quadcopter will provide longer flight times while having the same maneuvering flexibility in planar movements.
ContributorsLal, Harsh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
156718-Thumbnail Image.png
Description
Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the

Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the gait dynamic stability.

A knee exoskeleton and ankle assistive device (Robotic Shoe) are developed and used to provide walking assistance. The knee exoskeleton provides personalized knee joint assistive torque during the stance phase. The robotic shoe is a light-weighted mechanism that can store the potential energy at heel strike and release it by using an active locking mechanism at the terminal stance phase to provide push-up ankle torque and assist the toe-off. Lower-limb Kinematic time series data are collected for subjects wearing these devices in the passive and active mode. The changes of kinematics with and without these devices on lower-limb motion are first studied. Orbital stability, as one of the commonly used measure to quantify gait stability through calculating Floquet Multipliers (FM), is employed to asses the effects of these wearable devices on gait stability. It is shown that wearing the passive knee exoskeleton causes less orbitally stable gait for users, while the knee joint active assistance improves the orbital stability compared to passive mode. The robotic shoe only affects the targeted joint (right ankle) kinematics, and wearing the passive mechanism significantly increases the ankle joint FM values, which indicates less walking orbital stability. More analysis is done on a mechanically perturbed walking public data set, to show that orbital stability can quantify the effects of external mechanical perturbation on gait dynamic stability. This method can further be used as a control design tool to ensure gait stability for users of lower-limb assistive devices.
ContributorsRezayat Sorkhabadi, Seyed Mostafa (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
168324-Thumbnail Image.png
Description
This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant

This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant directions. Twenty healthy young adults were recruited to perform quiet standing tasks on the platform. Conventional stability measures, namely center-of-pressure (COP) path length and COP area, were also adopted for further comparisons with the proposed VTC. The results indicated that postural balance was adversely impacted, evidenced by significant decreases in VTC and increases in COP path length/area measures, as the ground compliance increased and/or in the absence of vision (ps < 0.001). Interaction effects between environment and vision were observed in VTC and COP path length measures (ps ≤ 0.05), but not COP area (p = 0.103). The estimated likelihood of falls in anterior-posterior (AP) and medio-lateral (ML) directions converged to nearly 50% (almost independent of the foot setting) as the experimental condition became significantly challenging. The second study introduces a deep learning approach using convolutional neural network (CNN) for predicting environments based on instant observations of sway during balance tasks. COP data were collected from fourteen subjects while standing on the 2D compliant environments. Different window sizes for data segmentation were examined to identify its minimal length for reliable prediction. Commonly-used machine learning models were also tested to compare their effectiveness with that of the presented CNN model. The CNN achieved above 94.5% in the overall prediction accuracy even with 2.5-second length data, which cannot be achieved by traditional machine learning models (ps < 0.05). Increasing data length beyond 2.5 seconds slightly improved the accuracy of CNN but substantially increased training time (60% longer). Importantly, averaged normalized confusion matrices revealed that CNN is much more capable of differentiating the mid-level environmental condition. These two studies provide new perspectives in human postural balance, which cannot be interpreted by conventional stability analyses. Outcomes of these studies contribute to the advancement of human interactive robots/devices for fall prevention and rehabilitation.
ContributorsPhan, Vu Nguyen (Author) / Lee, Hyunglae (Thesis advisor) / Peterson, Daniel (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021
189237-Thumbnail Image.png
Description
Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004 and 2008. Globally, LBP occurrence increased by almost 200 million

Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004 and 2008. Globally, LBP occurrence increased by almost 200 million from 1990 to 2017. This problem is further implicated by physical and financial constraints that impact the individual’s quality of life. The medical cost exceeded $87.6 billion, and the lifetime prevalence was 84%. This indicates that the majority of people in the US will experience this symptom. Also, LBP limits Activities of Daily Living (ADL) and possibly affects the gait and postural stability. Prior studies indicated that LBP patients have slower gait speed and postural instability. To alleviate this symptom, the epidural injection is prescribed to treat pain and improve mobility function. To evaluate the effectiveness of LBP epidural injection intervention, gait and posture stability was investigated before and after the injection. While these factors are the fundamental indicator of LBP improvement, ADL is an element that needs to be significantly considered. The physical activity level depicts a person’s dynamic movement during the day, it is essential to gather activity level that supports monitoring chronic conditions, such as LBP, osteoporosis, and falls. The objective of this study was to assess the effects of Epidural Steroid Injection (ESI) on LBP and related gait and postural stability in the pre and post-intervention status. As such, the second objective was to assess the influence of ESI on LBP, and how it influences the participant’s ADL physical activity level. The results indicated that post-ESI intervention has significantly improved LBP patient’s gait and posture stability, however, there was insufficient evidence to determine the significant disparity in the physical activity levels. In conclusion, ESI depicts significant positive effects on LBP patients’ gait and postural parameters, however, more verification is required to indicate a significant effect on ADL physical activity levels.
ContributorsMoon, Seong Hyun (Author) / Lockhart, Thurmon (Thesis advisor) / Honeycutt, Claire (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Soangra, Rahul (Committee member) / Arizona State University (Publisher)
Created2023
187371-Thumbnail Image.png
Description
Chronic ankle instability (CAI) is caused by the failure to seek treatment and rehabilitation after an acute ankle sprain. Typically, clinical assessment of ankle sprains is done under unloaded conditions, despite the fact that ankle sprains occur during weight loading. Characterization of ankle stiffness, a representation of ankle stability during

Chronic ankle instability (CAI) is caused by the failure to seek treatment and rehabilitation after an acute ankle sprain. Typically, clinical assessment of ankle sprains is done under unloaded conditions, despite the fact that ankle sprains occur during weight loading. Characterization of ankle stiffness, a representation of ankle stability during weight loading, is crucial to quantify ankle stability. Patients with CAI suffer from gait asymmetry, and the descriptions of the asymmetry ratio vary widely throughout the research community. Bilateral ankle stiffness could be a systematic metric to describe the gait asymmetry of CAI patients. Additionally, women generally have higher ankle joint and ligamentous laxity than men, and lower ankle stiffness, which has been thoroughly investigated in previous literature. However, differences in bilateral ankle stiffness between sexes still need to be investigated. Using twin dual-axis robotic platforms, this study investigated the weight loading effect on ankle stiffness in the frontal plane during standing, the bilateral difference in stiffness between the dominant and non-dominant ankle, and the sex difference in bilateral ankle stiffness during standing for varying weight distribution. The group average results of 20 healthy subjects showed that ankle stiffness increased with increasing weight loading on the ankle, which is speculated to be caused by active muscle contraction and changes in passive structure due to weight loading. For the bilateral difference of the group, the statistical analysis showed that there was no significant difference between dominant and non-dominant ankle stiffness for all the weight distributions considered. Although the group average result of the difference in bilateral ankle stiffness was statistically insignificant, individual analysis confirmed the importance of subject-specific investigation of bilateral ankle stiffness, as there were more cases of dominant ankle stiffness being larger than non-dominant ankle stiffness, and the bilateral difference was subject-specific. Investigations into sex differences in bilateral ankle stiffness showed that ankle stiffness in males is significantly greater than in females, even after normalizing the stiffness by weight, which is speculated to be caused by higher joint and ligamentous laxity in females regardless of laterality.
ContributorsPaing, Soe Lin (Author) / Lee, Hyunglae (Thesis advisor) / Berman, Spring (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2023
Description
There are many inconsistencies in the literature regarding how to estimate the Lyapunov Exponent (LyE) for gait. In the last decade, many papers have been published using Lyapunov Exponents to determine differences between young healthy and elderly adults and healthy and frail older adults. However, the differences in methodologies of

There are many inconsistencies in the literature regarding how to estimate the Lyapunov Exponent (LyE) for gait. In the last decade, many papers have been published using Lyapunov Exponents to determine differences between young healthy and elderly adults and healthy and frail older adults. However, the differences in methodologies of data collection, input parameters, and algorithms used for the LyE calculation has led to conflicting numerical values for the literature to build upon. Without a unified methodology for calculating the LyE, researchers can only look at the trends found in studies. For instance, LyE is generally lower for young adults compared to elderly adults, but these values cannot be correlated across studies to create a classifier for individuals that are healthy or at-risk of falling. These issues could potentially be solved by standardizing the process of computing the LyE.

This dissertation examined several hurdles that must be overcome to create a standardized method of calculating the LyE for gait data when collected with an accelerometer. In each of the following investigations, both the Rosenstein et al. and Wolf et al. algorithms as well as three normalization methods were applied in order to understand the extent at which these factors affect the LyE. First, the a priori parameters of time delay and embedding dimension which are required for phase space reconstruction were investigated. This study found that the time delay can be standardized to a value of 10 and that an embedding dimension of 5 or 7 should be used for the Rosenstein and Wolf algorithm respectively. Next, the effect of data length on the LyE was examined using 30 to 1300 strides of gait data. This analysis found that comparisons across papers are only possible when similar amounts of data are used but comparing across normalization methods is not recommended. And finally, the reliability and minimum required number of strides for each of the 6 algorithm-normalization method combinations in both young healthy and elderly adults was evaluated. This research found that the Rosenstein algorithm was more reliable and required fewer strides for the calculation of the LyE for an accelerometer.
ContributorsSmith, Victoria (Author) / Lockhart, Thurmon E (Thesis advisor) / Spano, Mark L (Committee member) / Honeycutt, Claire F (Committee member) / Lee, Hyunglae (Committee member) / Peterson, Daniel S (Committee member) / Arizona State University (Publisher)
Created2019
157994-Thumbnail Image.png
Description
This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established

This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.
ContributorsNevisipour, Masood (Author) / Honeycutt, Claire (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Abbas, James (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
158494-Thumbnail Image.png
Description
The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in

The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in lower extremity function is essential not just to advance the design and control of robots physically interacting with the human lower extremities but also in rehabilitation of humans suffering from neurodegenerative disorders.

In order to characterize the ankle mechanics and understand the underlying mechanisms that influence the neuromuscular properties of the ankle, a novel multi-axial robotic platform was developed. The robotic platform is capable of simulating various haptic environments and transiently perturbing the ankle to analyze the neuromechanics of the ankle, specifically the ankle impedance. Humans modulate ankle impedance to perform various tasks of the lower limb. The robotic platform is used to analyze the modulation of ankle impedance during postural balance and locomotion on various haptic environments. Further, various factors that influence modulation of ankle impedance were identified. Using the factors identified during environment dependent impedance modulation studies, the quantitative relationship between these factors, namely the muscle activation of major ankle muscles, the weight loading on ankle and the torque generation at the ankle was analyzed during postural balance and locomotion. A universal neuromuscular model of the ankle that quantitatively relates ankle stiffness, the major component of ankle impedance, to these factors was developed.

This neuromuscular model is then used as a basis to study the alterations caused in ankle behavior due to neurodegenerative disorders such as Multiple Sclerosis and Stroke. Pilot studies to validate the analysis of altered ankle behavior and demonstrate the effectiveness of robotic rehabilitation protocols in addressing the altered ankle behavior were performed. The pilot studies demonstrate that the altered ankle mechanics can be quantified in the affected populations and correlate with the observed adverse effects of the disability. Further, robotic rehabilitation protocols improve ankle control in affected populations as seen through functional improvements in postural balance and locomotion, validating the neuromuscular approach for rehabilitation.
ContributorsNalam, Varun (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Lockhart, Thurmon (Committee member) / Arizona State University (Publisher)
Created2020
158289-Thumbnail Image.png
Description
It has been repeatedly shown that females have lower stability and increased risk of ankle injury when compared to males participating in similar sports activities (e.g., basketball and soccer), yet sex differences in neuromuscular control of the ankle, including the modulation of ankle stiffness, and their contribution to stability remain

It has been repeatedly shown that females have lower stability and increased risk of ankle injury when compared to males participating in similar sports activities (e.g., basketball and soccer), yet sex differences in neuromuscular control of the ankle, including the modulation of ankle stiffness, and their contribution to stability remain unknown. To identify sex differences in human ankle stiffness, this study quantified 2- dimensional (2D) ankle stiffness in 20 young, healthy men and 20 young, healthy women during upright standing over a range of tasks, specifically, ankle muscle co-contraction tasks (4 levels up to 20% maximum voluntary co-contraction of ankle muscles), weight-bearing tasks (4 levels up to 90% of body weight), and ankle torque generation tasks accomplished by maintaining offset center-of-pressure (5 levels up to +6 cm to the center-of-pressure during quiet standing). A dual-axial robotic platform, capable of perturbing the ankle in both the sagittal and frontal planes and measuring the corresponding ankle torques, was used to reliably quantify the 2D ankle stiffness during upright standing. In all task conditions and in both planes of ankle motion, ankle stiffness in males was consistently greater than that in females. Among all 26 experimental conditions, all but 2 conditions in the frontal plane showed statistically significant sex differences. Further analysis on the normalized ankle stiffness scaled by weight times height suggests that while sex differences in ankle stiffness in the sagittal plane could be explained by sex differences in anthropometric factors as well as neuromuscular factors, the differences in the frontal plane could be mostly explained by anthropometric factors. This study also demonstrates that the sex differences in the sagittal plane were significantly higher as compared to those in the frontal plane. The results indicate that females have lower ankle stiffness during upright standing thereby providing the neuromuscular basis for further investigations on the correlation of ankle stiffness and the higher risk of ankle injury in females.
ContributorsAdjei, Ermyntrude (Author) / Lee, Hyunglae (Thesis advisor) / Santello, Marco (Committee member) / Lockhart, Thurmon E (Committee member) / Arizona State University (Publisher)
Created2020