Matching Items (63)

131377-Thumbnail Image.png

Using Graphene as a Flex Resistor to Detect Biodynamics

Description

Over the past 30 years the use of graphene has been increasing at a rapid rate. The reason why graphene has become more popular is because it is starting to be understood better, and researchers are starting to recognize graphene’s

Over the past 30 years the use of graphene has been increasing at a rapid rate. The reason why graphene has become more popular is because it is starting to be understood better, and researchers are starting to recognize graphene’s unique properties. Graphene is a single atomic layer of graphite, and graphite is a three-dimensional cube base structure of carbon. Graphite has a high conductivity rate, and graphene has an even higher conductivity, meaning that graphene makes for an excellent resistor in any hardware system. Graphene is flexible, has high durability, and can vary in resistance based on its shape (Sharon 2015). With graphene being able to change its resistivity, it can act as different types of sensors. These sensors include measuring pressure, resistance, force, strain, and angle. One problem across the globe is that patients have arthritis, decaying bone density, and injuries which can easily go mistreated or not treated at all. It can be hard to determine the severity of injuries in joints by observation of the patient. There are tools and equipment that will allow a doctor to track the force and degrees of motion of certain joints, but they are mostly limited to hospitals. With graphene acting as a sensor it can be embedded into casts, braces, and even clothing. With a mobile sensor that relays accurate and continuous data to a doctor they can more precisely determine a therapy or recovery time that will better suit the patients’ needs. In this project the graphene was used to measure the angle of a patient’s wrist while they were wearing a wrist brace. From the data collected, the graphene was able to track the user’s movement of their wrist as they moved it in a single direction. The data showed the angle of the wrist ranging from zero degrees to 90 degrees. This proves that graphene can shape the way biosensing is accomplished. Biodynamics is a growing field, and with more injuries everyday it is important to study graphene and how it can be used to diagnose and prevent injuries related to joints. Graphene can be used as a biosensor which can then be implemented into a brace to allow for accurate biodynamic tracking.

Contributors

Agent

Created

Date Created
2020-05

132475-Thumbnail Image.png

[Detection of Heel-off Initiation Based on the Relationship Between Ground Reaction Forces and Surface Electromyography: Heel-toe, Heel-toe, a Story]

Description

The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden

The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is vital for a patient’s recovery of motor function which is time demanding and taxing on the physical therapist. Wearable robotics have been proven to improve functional outcomes in gait rehabilitation by providing controlled high dosage and high-intensity training. Accurate control strategies for assistive robotic exoskeletons are vital for repetitive high precisions assistance for cerebral plasticity to occur.

This thesis presents a preliminary determination and design of a control algorithm for an assistive ankle device developed by the ASU RISE Laboratory. The assistive ankle device functions by compressing a spring upon heel strike during gait, remaining compressed during mid-stance and then releasing upon initiation of heel-off. The relationship between surface electromyography and ground reactions forces were used for identification of user-initiated heel-off. The muscle activation of the tibialis anterior combined with the ground reaction forces of the heel pressure sensor generated potential features that will be utilized in the revised control algorithm for the assistive ankle device. Work on this project must proceed in order to test and validate the revised control algorithm to determine its accuracy and precision.

Contributors

Agent

Created

Date Created
2019-05

132889-Thumbnail Image.png

The Effects of Forearm Wearable Resistance on Horizontal Force-Velocity Profiles in Sprinting

Description

Given the importance of arm mechanics in sprinting and the utility of F-V profiles, the purpose of the following study was to determine the effects of forearm WR on the horizontal F-V profile during sprinting. To determine the effect of

Given the importance of arm mechanics in sprinting and the utility of F-V profiles, the purpose of the following study was to determine the effects of forearm WR on the horizontal F-V profile during sprinting. To determine the effect of forearm WR on the horizontal F-V profile during sprinting, a cross-sectional, repeated measure within subjects design was used, with athletes assessed both with and without forearm WR. The WR condition used 2% BM attached to the forearms. In a randomized order, subjects performed a series of maximal effort 30 m sprints; two unloaded sprints and four with WR. Three sprints were executed from a block start: one unloaded, and two with WR. The additional three sprints were executed from a split-stance start: one unloaded and two with WR. From this study, 2%BM WR was found to significantly increase sprint times from both block and standing starts. It also significantly decreased V0 and Fsystem from a block start and Psystem from a standing start. The significance from a block start may imply the arm’s greater role during the start and acceleration phases of sprinting during that position. The overloading of V0 from a block start in the F-V profile points to forearm WR as a possible tool for athletes to use during training who are overly force dominant from a block start and need to shift their profile to V0 dominance or balance in general.

Contributors

Agent

Created

Date Created
2019-05

137074-Thumbnail Image.png

A Simpler Method To Evaluate The Knee Adduction Moment During Gait Using Plantar Pressure Measurements

Description

Medial compartment knee osteoarthritis (OA) is a disease whose severity has been associated with the peak adduction moment during walking (pKAM). Unfortunately, measuring patients' pKAM to track their therapy progress involves the use of a gait laboratory which is expensive

Medial compartment knee osteoarthritis (OA) is a disease whose severity has been associated with the peak adduction moment during walking (pKAM). Unfortunately, measuring patients' pKAM to track their therapy progress involves the use of a gait laboratory which is expensive and time intensive. This study aimed to develop and assess a regression method to predict the pKAM using only plantar pressure measurements. This approach could greatly reduce the burden of evaluating pKAM.

Contributors

Agent

Created

Date Created
2014-05

137105-Thumbnail Image.png

FOOT STRIKE AND INJURY RATES IN ENDURANCE RUNNERS: A RETROSPECTIVE STUDY- REVISITED

Description

Although the sport and exercise of running has a great amount of benefits to anyone's health, there is a chance of injury that can occur. There are many variables that can contribute to running injury. However, because of the vast

Although the sport and exercise of running has a great amount of benefits to anyone's health, there is a chance of injury that can occur. There are many variables that can contribute to running injury. However, because of the vast amount of footsteps a frequent runner takes during their average run, foot strike pattern is a significant factor to be investigated in running injury research. This study hypothesized that due to biomechanical factors, runners that exhibited a rear foot striking pattern would display a greater incidence of chronic lower extremity injury in comparison to forefoot striking counterparts. This hypothesis would support previous studies conducted on the topic. Student-athletes in the Arizona State University- Men's and Women's Track & Field program, specifically those who compete in distance events, were given self reporting surveys to provide injury history and had their foot strike patterns analyzed through video recordings. The survey and analysis of foot strike patterns resulted in data that mostly followed the hypothesized pattern of mid-foot and forefoot striking runners displaying a lower average frequency of injury in comparison to rear foot strikers. The differences in these averages across all injury categories was found to be statistically significant. One category that displayed the most supportive results was in the average frequency of mild injury. This lead to the proposed idea that while foot strike patterns may not be the best predictor of moderate and severe injuries, they may play a greater role in the origin of mild injury. Such injuries can be the gateway to more serious injury (moderate and severe) that are more likely to have their cause in other sources such as genetics or body composition for example. This study did support the idea that foot strike pattern can be the main predictor in incidence of running injuries, but also displayed that it is one of many major factors that contribute to injuries in runners.

Contributors

Agent

Created

Date Created
2014-05

135593-Thumbnail Image.png

Learning Dynamic Manipulation with Redundant Degrees of Freedom: Sub-Optimal Motor Solution induced by switching tasks

Description

The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in

The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched direction, inducing increased error from the previous trials. Subjects returned after a 24-hour period to complete a similar protocol, but beginning with the second context and ending with the first. Interference from the first context on each day caused an increase in initial error for the second (P < 0.05). Following the rest period, subjects showed retention of the sensorimotor memory from the previous day through significantly decreased initial error (P = 3x10-6). However, subjects showed an increase in forces for each new context resulting from a sub-optimal motor strategy. Higher levels of total effort (P < 0.05) and a lack of separation between force values for opposing and non-opposing digits (P > 0.05) indicated a strategy that used more energy to complete the task, even when rates of learning appeared identical or improved. Two possible mechanisms for this lack of energy conservation have been proposed.

Contributors

Agent

Created

Date Created
2016-05

148198-Thumbnail Image.png

Human Postural Stability Under 2-dimensional Oscillatory Perturbations

Description

Oscillatory perturbations with varying amplitudes and frequencies have been found to significantly affect human standing balance. However, previous studies have only applied perturbation in either the anterior-posterior (AP) or the medio-lateral (ML) directions. Little is currently known about the

Oscillatory perturbations with varying amplitudes and frequencies have been found to significantly affect human standing balance. However, previous studies have only applied perturbation in either the anterior-posterior (AP) or the medio-lateral (ML) directions. Little is currently known about the impacts of 2D oscillatory perturbations on postural stability, which are more commonly seen in daily life (i.e., while traveling on trains, ships, etc.). This study investigated the effects of applying 2D perturbations vs 1D perturbations on standing stability, and how increasing the frequency and amplitude of perturbation impacts postural stability. A dual-axis robotic platform was utilized to simulate various oscillatory perturbations and evaluate standing postural stability. Fifteen young healthy subjects were recruited to perform quiet stance on the platform. Impacts of perturbation direction (i.e., 1D versus 2D), amplitude, and frequency on postural stability were investigated by analyzing different stability measures, specifically AP/ML/2D Center-of-Pressure (COP) path length, AP/ML/2D Time-to-Boundary (TtB), and sway area. Standing postural stability was compromised more by 2D perturbations than 1D perturbations, evidenced by a significant increase in COP path length and sway area and decrease in TtB. Further, the stability decreased as 2D perturbation amplitude and frequency increased. A significant increase in COP path length and decrease in TtB were consistently observed as the 2D perturbation amplitude and frequency increased. However, sway area showed a considerable increase only with increasing perturbation amplitude but not with increasing frequency.

Contributors

Created

Date Created
2021-05

152308-Thumbnail Image.png

Positional behaviors and the neck: a comparative analysis of the cervical vertebrae of living primates and fossil hominoids

Description

Despite the critical role that the vertebral column plays in postural and locomotor behaviors, the functional morphology of the cervical region (i.e., the bony neck) remains poorly understood, particularly in comparison to that of the thoracic and lumbar sections. This

Despite the critical role that the vertebral column plays in postural and locomotor behaviors, the functional morphology of the cervical region (i.e., the bony neck) remains poorly understood, particularly in comparison to that of the thoracic and lumbar sections. This dissertation tests the hypothesis that morphological variation in cervical vertebrae reflects differences in positional behavior (i.e., suspensory vs. nonsuspensory and orthograde vs. pronograde locomotion and postures). Specifically, this project addresses two broad research questions: (1) how does the morphology of cervical vertebrae vary with positional behavior and cranial morphology among primates and (2) where does fossil hominoid morphology fall within the context of the extant primates. Three biomechanical models were developed for the primate cervical spine and their predictions were tested by conducting a comparative analysis using a taxonomically and behaviorally diverse sample of primates. The results of these analyses were used to evaluate fossil hominoid morphology. The two biomechanical models relating vertebral shape to positional behaviors are not supported. However, a number of features distinguish behavioral groups. For example, the angle of the transverse process in relation to the cranial surface of the vertebral body--a trait hypothesized to reflect the deep spinal muscles' ability to extend and stabilize the neck--tends to be greater in pronograde species; this difference is in the opposite of the direction predicted by the biomechanical models. Other traits distinguish behavioral groups (e.g., spinous process length and cross-sectional area), but only in certain parts of the cervical column. The correlation of several vertebral features, especially transverse process length and pedicle cross-sectional area, with anterior cranial length supports the predictions made by the third model that links cervical morphology with head stabilization (i.e., head balancing). Fossil hominoid cervical remains indicate that the morphological pattern that characterizes modern humans was not present in Homo erectus or earlier hominins. These hominins are generally similar to apes in having larger neural arch cross-sectional areas and longer spinous processes than modern humans, likely indicating the presence of comparatively large nuchal muscles. The functional significance of this morphology remains unclear.

Contributors

Agent

Created

Date Created
2013

132073-Thumbnail Image.png

Variable Damping Control of the Robotic Ankle Joint to Improve Trade-off between Agility and Stability

Description

This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle

This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the different directions of motion. The range of damping applied was selected based on the known inherent damping of the human ankle, ensuring that the coupled system became positively damped, and therefore stable. Human experiments were performed to understand and quantify the effects of the variable damping controller on the human user. Within the study, the human subjects performed a target reaching exercise while the ankle robot provided the system with constant positive, constant negative, or variable damping. These three damping conditions could then be compared to analyze the performance of the system. The following performance measures were selected: maximum speed to quantify agility, maximum overshoot to quantify stability, and muscle activation to quantify effort required by the human user. Maximum speed was found to be statistically the same in the variable damping controller and the negative damping condition and to be increased from positive damping controller to variable damping condition by 57.9%, demonstrating the agility of the system. Maximum overshoot was found to significantly decrease overshoot from the negative damping condition to the variable damping controller by 39.6%, demonstrating an improvement in system stability with the variable damping controller. Muscle activation results showed that the variable damping controller required less effort than the positive damping condition, evidenced by the decreased muscle activation of 23.8%. Overall, the study demonstrated that a variable damping controller can balance the trade-off between agility and stability in human-robot interactions and therefore has many practical implications.

Contributors

Created

Date Created
2019-12

132176-Thumbnail Image.png

Development of an OpenSim Simulation to Identify Time and Force Magnitude Needed at Toe-Off Stage for an Assistive Force Ankle Device

Description

Human walking is a complex and rhythmical activity that comprises of the brain, nerves and muscles. Neuromuscular disorder (NMD) is a broad term that refers to conditions that affect the proper use of muscles and nervous system, thus also impairing

Human walking is a complex and rhythmical activity that comprises of the brain, nerves and muscles. Neuromuscular disorder (NMD) is a broad term that refers to conditions that affect the proper use of muscles and nervous system, thus also impairing the walking or gait cycle of an individual. The improper gait cycle might be attributed to the lack of force produced at the toe-off stage. This project addresses if it is possible to create an OpenSim model to find the ideal time and force magnitude needed of an assistive force ankle device to improve gait patterns in individuals with NMD.

Contributors

Agent

Created

Date Created
2019-05