Matching Items (15)
Filtering by

Clear all filters

154604-Thumbnail Image.png
Description
This thesis presents systematic studies on angle dependent Raman and Photoluminescence (PL) of a new class of layered materials, Transition Metal Trichalcogenides (TMTCs), which are made up of layers possessing anisotropic structure within the van-der-Waals plane. The crystal structure of individual layer of MX3 compounds consists of aligned nanowire like

This thesis presents systematic studies on angle dependent Raman and Photoluminescence (PL) of a new class of layered materials, Transition Metal Trichalcogenides (TMTCs), which are made up of layers possessing anisotropic structure within the van-der-Waals plane. The crystal structure of individual layer of MX3 compounds consists of aligned nanowire like 1D chains running along the b-axis direction. The work focuses on the growth of two members of this family - ZrS3 and TiS3 - through Chemical Vapor Transport Method (CVT), with consequent angle dependent Raman and PL studies which highlight their in-plane optically anisotropic properties. Results highlight that the optical properties of few-layer flakes are highly anisotropic as evidenced by large PL intensity variation with polarization direction (in ZrS3) and an intense variation in Raman intensity with variation in polarization direction (in both ZrS3 and TiS3).

Results suggest that light is efficiently absorbed when E-field of the polarized incident excitation laser is polarized along the chain (b-axis). It is greatly attenuated and absorption is reduced when field is polarized perpendicular to the length of 1D-like chains, as wavelength of the exciting light is much longer than the width of each 1D chain. Observed PL variation with respect to the azimuthal flake angle is similar to what has been previously observed in 1D materials like nanowires. However, in TMTCs, since the 1D chains interact with each other, it gives rise to a unique linear dichroism response that falls between 2D and 1D like behavior. These results not only mark the very first demonstration of high PL polarization anisotropy in 2D systems, but also provide a novel insight into how interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of Quasi-1D materials. The presented results are anticipated to have impact in technologies involving polarized detection, near-field imaging, communication systems, and bio-applications relying on the generation and detection of polarized light.
ContributorsPant, Anupum (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry Lynn (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
155430-Thumbnail Image.png
Description
A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC

A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC family, specifically TiS3, ZrS3, and HfS3, are relatively unknown and studies performed in this work elucidates the origin of their Raman characteristics. The crystals were synthesized through chemical vapor transport prior to mechanical exfoliation onto Si/SiO¬2 substrates. XRD, AFM, and Raman spectroscopy were used to determine the crystallinity, thickness, and chemical signature of the exfoliated crystals. Vibrational modes and anisotropic polarization are investigated through density functional theory calculations and angle-resolved Raman spectroscopy. Particular Raman modes are explored in order to correlate select peaks to the b-axis crystalline direction. Mode III vibrations for TiS3, ZrS3, and HfS3 are shared between each material and serves as a unique identifier of the crystalline orientation in MX3 materials. Similar angle-resolved Raman studies were conducted on the novel Nb0.5Ti0.5S3 alloy material grown through chemical vapor transport. Results show that the anisotropy direction is more difficult to determine due to the randomization of quasi-1D chains caused by defects that are common in 2D alloys. This work provides a fundamental understanding of the vibrational properties of various TMTC materials which is needed to realize applications in direction dependent polarization and linear dichroism.
ContributorsKong, Wilson (Author) / Tongay, Sefaattin (Thesis advisor) / Wang, Liping (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2017
155556-Thumbnail Image.png
Description
Microplastics are emerging to be major problem when it comes to water pollution and they pose a great threat to marine life. These materials have the potential to affect a wide range of human population since humans are the major consumers of marine organisms. Microplastics are less than 5 mm

Microplastics are emerging to be major problem when it comes to water pollution and they pose a great threat to marine life. These materials have the potential to affect a wide range of human population since humans are the major consumers of marine organisms. Microplastics are less than 5 mm in diameter, and can escape from traditional wastewater treatment plant (WWTP) processes and end up in our water sources. Due to their small size, they have a large surface area and can react with chlorine, which it encounters in the final stages of WWTP. After the microplastics accumulate in various bodies of water, they are exposed to sunlight, which contains oxidative ultraviolet (UV) light. Since the microplastics are exposed to oxidants during and after the treatment, there is a strong chance that they will undergo chemical and/or physical changes. The WWTP conditions were replicated in the lab by varying the concentrations of chlorine from 70 to 100 mg/L in increments of 10 mg/L and incubating the samples in chlorine baths for 1–9 days. The chlorinated samples were tested for any structural changes using Raman spectroscopy. High density polyethylene (HDPE), polystyrene (PS), and polypropylene (PP) were treated in chlorine baths and observed for Raman intensity variations, Raman peak shifts, and the formation of new peaks over different exposure times. HDPE responded with a lot of oxidation peaks and shifts of peaks after just one day. For the degradation of semi-crystalline polymers, there was a reduction in crystallinity, as verified by thermal analysis. There was a decrease in the enthalpy of melting as well as the melting temperature with an increase in the exposure time or chlorine concentration, which pointed at the degradation of plastics and bond cleavages. To test the plastic response to

ii

UV, the samples were exposed to sunlight for up to 210 days and analyzed under Raman spectroscopy. Overall the physical and chemical changes with the polymers are evident and makes a way for the wastewater treatment plant to take necessary steps to capture the microplastics to avoid the release of any kind of degraded microplastics that could affect marine life and the environment.
ContributorsKelkar, Varun (Author) / Green, Matthew D (Thesis advisor) / Tongay, Sefaattin (Committee member) / Halden, Rolf U. (Committee member) / Arizona State University (Publisher)
Created2017
189347-Thumbnail Image.png
Description
Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging.

Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging. Moreover, there is no fixed framework to identify the doping concentration, which impedes their process integration for future commercialization. This work utilizes the Neutron Transmutation Doping technique to control the doping uniformly and precisely in TMDCs. Rhenium and Tin dopants are introduced in Tungsten- and Indium-based Chalcogenides, respectively. Fine-tuning over 0.001% doping level is achieved. Precise analytical techniques such as Gamma spectroscopy and Secondary Ion Mass Spectrometry are used to quantify ultra-low doping levels ranging from 0.005-0.01% with minimal error. Dopants in 2D TMDCs often exhibit a broad stokes-shifted emission, with high linewidths, due to extrinsic effects such as substrate disorder and surface adsorbates. A well-defined bound exciton emission induced by Rhenium dopants in monolayer WSe2 and WS2 at liquid nitrogen temperatures is reported along with specific annealing regimes to minimize the defects induced in the Neutron Transmutation process. This work demonstrates a framework for Neutron Doping in 2D materials, which can be a scalable process for controlling doping and doping-induced effects in 2D materials.
ContributorsLakhavade, Sushant Sambhaji (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2023
168790-Thumbnail Image.png
Description
Vanadium-dioxide-based devices show great switchability in their optical properties due to its dramatic thermochromic phase transition from insulator to metal, but generally have concerns due to its relatively high transition temperature at 68 °C. Doping the vanadium dioxide with tungsten has been shown to reduce its transition temperature at the

Vanadium-dioxide-based devices show great switchability in their optical properties due to its dramatic thermochromic phase transition from insulator to metal, but generally have concerns due to its relatively high transition temperature at 68 °C. Doping the vanadium dioxide with tungsten has been shown to reduce its transition temperature at the cost lower optical property differences between its insulating and metallic phases. A recipe is developed through parametric experimentation to fabricate tungsten-doped vanadium dioxide consisting of a novel dual target co-sputtering deposition, a furnace oxidation process, and a post-oxidation annealing process. The transmittance spectra of the resulting films are measured via Fourier-transform infrared spectroscopy at different temperatures to confirm the lowered transition temperature and analyze their thermal-optical hysteresis behavior through the transition temperature range. Afterwards, the optical properties of undoped sputtered vanadium films are modeled and effective medium theory is used to explain the effect of tungsten dopants on the observed transmittance decrease of doped vanadium dioxide. The optical modeling is used to predict the performance of tungsten-doped vanadium dioxide devices, in particular a Fabry-Perot infrared emitter and a nanophotonic infrared transmission filter. Both devices show great promise in their optical properties despite a slight performance decrease from the tungsten doping. These results serve to illustrate the excellent performance of the co-sputtered tungsten-doped vanadium dioxide films.
ContributorsChao, Jeremy (Author) / Wang, Liping (Thesis advisor) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2022
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
157927-Thumbnail Image.png
Description
Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems

Two-dimensional quantum materials have garnered increasing interest in a wide

variety of applications due to their promising optical and electronic properties. These

quantum materials are highly anticipated to make transformative quantum sensors and

biosensors. Biosensors are currently considered among one of the most promising

solutions to a wide variety of biomedical and environmental problems including highly

sensitive and selective detection of difficult pathogens, toxins, and biomolecules.

However, scientists face enormous challenges in achieving these goals with current

technologies. Quantum biosensors can have detection with extraordinary sensitivity and

selectivity through manipulation of their quantum states, offering extraordinary properties

that cannot be attained with traditional materials. These quantum materials are anticipated

to make significant impact in the detection, diagnosis, and treatment of many diseases.

Despite the exciting promise of these cutting-edge technologies, it is largely

unknown what the inherent toxicity and biocompatibility of two-dimensional (2D)

materials are. Studies are greatly needed to lay the foundation for understanding the

interactions between quantum materials and biosystems. This work introduces a new

method to continuously monitor the cell proliferation and toxicity behavior of 2D

materials. The cell viability and toxicity measurements coupled with Live/Dead

fluorescence imaging suggest the biocompatibility of crystalline MoS2 and MoSSe

monolayers and the significantly-reduced cellular growth of defected MoTe2 thin films

and exfoliated MoS2 nanosheets. Results show the exciting potential of incorporating

kinetic cell viability data of 2D materials with other assay tools to further fundamental

understanding of 2D material biocompatibility.
ContributorsTran, Michael, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Thesis advisor) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
158656-Thumbnail Image.png
Description
Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in

Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic etc., which cannot be found within single material systems. Considering that compositional modifications in 2D systems lead to significant changes in properties due to the high anisotropy inherent to their crystallographic structure, this work focuses on alloying of TMH compounds to explore the potentials for tuning their properties. In this thesis, the ternary cation alloys of Co(1-x)Ni(x)Cl(2) and Mo(1-x)Cr(x)Cl(3) were synthesized via chemical vapor transport at a various stoichiometry. Their compositional, structural, and magnetic properties were studied using Energy Dispersive Spectroscopy, Raman Spectroscopy, X-Ray Diffraction, and Vibrating Sample Magnetometry. It was found that completely miscible ternary alloys of Co(1-x)Ni(x)Cl(2) show an increasing Néel temperature with nickel concentration. The Mo(1-x)Cr(x)Cl(3) alloy shows potential magnetic phase changes induced by the incorporation of molybdenum species within the host CrCl3 lattice. Magnetic measurements give insight into potential antiferromagnetic to ferromagnetic transition with molybdenum incorporation, accompanied by a shift in the magnetic easy-axis from parallel to perpendicular. Phase separation was found in the Fe(1-x)Cr(x)Cl(3) ternary alloy indicating that crystallographic structure compatibility plays an essential role in determining the miscibility of two parent compounds. Alloying across two similar (TMH) compounds appears to yield predictable results in properties as in the case of Co(1-x)Ni(x)Cl(2), while more exotic transitions, as in the case of Mo(1-x)Cr(x)Cl(3), can emerge by alloying dissimilar compounds. When dissimilarity reaches a certain limit, as with Fe(1-x)Cr(x)Cl(3), phase separation becomes more favorable. Future studies focusing on magnetic and structural phase transitions will reveal more insight into the effect of alloying in these TMH systems.
ContributorsKolari, Pranvera (Author) / Tongay, Sefaattin (Thesis advisor) / Jiao, Yang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2020
158390-Thumbnail Image.png
Description
Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an

Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an outburst of intense research to understand the feasible synthesis and exciting material properties of these class of materials. Despite their potential, studies to date show that it is extremely challenging to synthesize and manufacture 2D MOF at large scales with ultimate control over crystallinity and thickness.

The field of research to date has produced various synthesis routes which can further be used to design 2D materials with a range of organic ligands and metal linkers. This thesis seeks to extend these design rules to demonstrate the competitive growth of two- dimensional (2D) metal-organic frameworks(MOF) and their alloys to predict which ligands and metals can be combined, study the intercalation of Bromine in these frameworks and their alloys which leads to the discovery of reduced band gap in the layered MOF alloy.

In this study it has been shown that the key factor in achieving layered 2D MOFs and it relies on the use of carefully engineered ligands to terminate the out-of-plane sites on metal clusters thereby eliminating strong interlayer hydrogen bond formation.

The major contribution of pyridine is to replace interlayer hydrogen bonding or other weak chemical bonds. Overall results establish an entirely new synthesis method for producing highly crystalline and scalable 2D MOFs and their alloys. Bromine intercalation merits future studies on band gap engineering in these layered materials.
ContributorsVijay, Shiljashree (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew D (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
158253-Thumbnail Image.png
Description
Two dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) are a new class of atomically thin polar materials. In these materials, the top and the bottom atomic layer are made of different chalcogen atoms. To date, several theoretical studies have shown that a broken mirror symmetry induces a colossal electrical field

Two dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) are a new class of atomically thin polar materials. In these materials, the top and the bottom atomic layer are made of different chalcogen atoms. To date, several theoretical studies have shown that a broken mirror symmetry induces a colossal electrical field in these materials, which leads to unusual quantum properties. Despite these new properties, the current knowledge in their synthesis is limited only through two independent studies; both works rely on high-temperature processing techniques and are specific to only one type of 2D Janus material - MoSSe. Therefore, there is an urgent need for the development of a new synthesis method to (1) Extend the library of Janus class materials. (2) Improve the quality of 2D crystals. (3) Enable the synthesis of Janus heterostructures. The central hypothesis in this work is that the processing temperature of 2D Janus synthesis can be significantly lowered down to room temperatures by using reactive hydrogen and sulfur radicals while stripping off selenium atoms from the 2D surface. To test this hypothesis, a series of controlled growth studies were performed, and several complementary characterization techniques were used to establish a process–structure-property relationship. The results show that the newly proposed approach, namely Selective Epitaxy and Atomic Replacement (SEAR), is effective in reducing the growth temperature down to ambient conditions. The proposed technique benefits in achieving highly crystalline 2D Janus layers with an excellent optical response. Further studies herein show that this technique can form highly sophisticated lateral and vertical heterostructures of 2D Janus layers. Overall results establish an entirely new growth technique for 2D Janus.layers, which pave ways for the realization of exciting quantum effects in these materials such as Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state, Majorana fermions, and topological p-wave superconductors.
ContributorsSayyad, Mohammed Yasir (Author) / Tongay, Sefaattin (Thesis advisor) / Crozier, Peter (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2020