Matching Items (514)
Filtering by

Clear all filters

158017-Thumbnail Image.png
Description
Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or

Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or O2-permeable membranes themselves, but also can be incorporated with molten carbonate to form dual-phase membranes for CO2 separation.

Oxygen sorption/desorption properties of perovskite oxides with and without oxygen vacancy were investigated first by thermogravimetric analysis (TGA) and fixed-bed experiments. The oxide with unique disorder-order phase transition during desorption exhibited an enhanced oxygen desorption rate during the TGA measurement but not in fixed-bed demonstrations. The difference in oxygen desorption rate is due to much higher oxygen partial pressure surrounding the sorbent during the fixed-bed oxygen desorption process, as revealed by X-ray diffraction (XRD) patterns of rapidly quenched samples.

Research on using perovskite oxides as CO2-permeable dual-phase membranes was subsequently conducted. Two CO2-resistant MIEC perovskite ceramics, Pr0.6Sr0.4Co0.2Fe0.8 O3-δ (PSCF) and SrFe0.9Ta0.1O3-δ (SFT) were chosen as support materials for membrane synthesis. PSCF-molten carbonate (MC) and SFT-MC membranes were prepared for CO2-O2 counter-permeation. The geometric factors for the carbonate phase and ceramic phase were used to calculate the effective carbonate and oxygen ionic conductivity in the carbonate and ceramic phase. When tested in CO2-O2 counter-permeation set-up, CO2 flux showed negligible change, but O2 flux decreased by 10-32% compared with single-component permeation. With CO2 counter-permeation, the total oxygen permeation flux is higher than that without counter-permeation.

A new concept of CO2-permselective membrane reactor for hydrogen production via steam reforming of methane (SRM) was demonstrated. The results of SRM in the membrane reactor confirm that in-situ CO2 removal effectively promotes water-gas shift conversion and thus enhances hydrogen yield. A modeling study was also conducted to assess the performance of the membrane reactor in high-pressure feed/vacuum sweep conditions, which were not carried out due to limitations in current membrane testing set-up. When 5 atm feed pressure and 10-3 atm sweep pressure were applied, the membrane reactor can produce over 99% hydrogen stream in simulation.
ContributorsWu, Han-Chun (Author) / Lin, Jerry Y.S. (Thesis advisor) / Deng, Shuguang (Committee member) / Jiao, Yang (Committee member) / Emady, Heather (Committee member) / Muhich, Christopherq (Committee member) / Arizona State University (Publisher)
Created2020
157845-Thumbnail Image.png
Description
Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various

Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various performance metrics, can be combined to elucidate functionality at multiple length scales. In this work, two promising visible light harvesting systems are studied in detail: Pt-functionalized graphitic carbon nitrides (g-CNxHys) and TiO2-supported CeO2-x composites.

Electron energy-loss spectroscopy (EELS) is used to sense variations in the local concentration of amine moieties (defects believed to facilitate interfacial charge transfer) at the surface of a g-CNxHy flake. Using an aloof-beam configuration, spatial resolution is maximized while minimizing damage thus providing nanoscale vibrational fingerprints similar to infrared absorption spectra. Structural disorder in g-CNxHys is further studied using transmission electron microscopy at low electron fluence rates. In-plane structural fluctuations revealed variations in the local azimuthal orientation of the heptazine building blocks, allowing planar domain sizes to be related to the average polymer chain length. Furthermore, competing factors regulating photocatalytic performance in a series of Pt/g-CNxHys is elucidated. Increased polymer condensation in the g-CNxHy support enhances the rate of charge transfer to reactants owing to higher electronic mobility. However, active site densities are over 3x lower on the most condensed g-CNxHy which ultimately limits its H2 evolution rate (HER). Based on these findings, strategies to improve the cocatalyst configuration on intrinsically active supports are given.

In TiO2/CeO2-x photocatalysts, the effect of the support particle size on the bulk
anoscale properties and photocatalytic performance is investigated. Small anatase supports facilitate highly dispersed CeO2-x species, leading to increased visible light absorption and HERs resulting from a higher density of mixed metal oxide (MMO) interfaces with Ce3+ species. Using monochromated EELS, bandgap states associated with MMO interfaces are detected, revealing electronic transitions from 0.5 eV up to the bulk bandgap onset of anatase. Overall, the electron microscopy/spectroscopy techniques developed and applied herein sheds light onto the relevant defects and limiting processes operating within these photocatalyst systems thus suggesting rational design strategies.
ContributorsHaiber, Diane Michelle (Author) / Crozier, Peter (Thesis advisor) / Chan, Candace (Committee member) / Liu, Jingyue (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2019
161443-Thumbnail Image.png
Description
Wide bandgap semiconductors are of much current interest due to their superior electrical properties. This dissertation describes electron microscopy characterization of GaN-on-GaN structures for high-power vertical device applications. Unintentionally-doped (UID) GaN layers grown homoepitaxially via metal-organic chemical vapor deposition on freestanding GaN substrates, were subjected to dry etching, and layers

Wide bandgap semiconductors are of much current interest due to their superior electrical properties. This dissertation describes electron microscopy characterization of GaN-on-GaN structures for high-power vertical device applications. Unintentionally-doped (UID) GaN layers grown homoepitaxially via metal-organic chemical vapor deposition on freestanding GaN substrates, were subjected to dry etching, and layers of UID-GaN/p-GaN were over-grown. The as-grown and regrown heterostructures were examined in cross-section using transmission electron microscopy (TEM). Two different etching treatments, fast-etch-only and multiple etches with decreasing power, were employed. The fast-etch-only devices showed GaN-on-GaN interface at etched location, and low device breakdown voltages were measured (~ 45-95V). In comparison, no interfaces were visible after multiple etching steps, and the corresponding breakdown voltages were much higher (~1200-1270V). These results emphasized importance of optimizing surface etching techniques for avoiding degraded device performance. The morphology of GaN-on-GaN devices after reverse-bias electrical stressing to breakdown was investigated. All failed devices had irreversible structural damage, showing large surface craters (~15-35 microns deep) with lengthy surface cracks. Cross-sectional TEM of failed devices showed high densities of threading dislocations (TDs) around the cracks and near crater surfaces. Progressive ion-milling across damaged devices revealed high densities of TDs and the presence of voids beneath cracks: these features were not observed in unstressed devices. The morphology of GaN substrates grown by hydride vapor-phase epitaxy (HVPE) and by ammonothermal methods were correlated with reverse-bias results. HVPE substrates showed arrays of surface features when observed by X-ray topography (XRT). All fabricated devices that overlapped with these features had typical reverse-bias voltages less than 100V at a leakage current limit of 10-6 A. In contrast, devices not overlapping with such features reached voltages greater than 300V. After etching, HVPE substrate surfaces showed defect clusters and macro-pits, whereas XRT images of ammonothermal substrate revealed no visible features. However, some devices fabricated on ammonothermal substrate failed at low voltages. Devices on HVPE and ammonothermal substrates with low breakdown voltages showed crater-like surface damage and revealed TDs (~25µm deep) and voids; such features were not observed in devices reaching higher voltages. These results should assist in developing protocols to fabricate reliable high-voltage devices.
ContributorsPeri, Prudhvi Ram (Author) / Smith, David J. (Thesis advisor) / Alford, Terry (Committee member) / Mccartney, Martha R (Committee member) / Nemanich, Robert (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2021
161333-Thumbnail Image.png
Description
Physical vapor deposition (PVD) of phase-separating multicomponent alloy films generates a rich variety of unique self-organized nanoscale morphologies. However, an understanding of how the different material and process parameters influence the formation of these nanostructures is limited. My dissertation aims to bridge this gap by developing phase-field models that can

Physical vapor deposition (PVD) of phase-separating multicomponent alloy films generates a rich variety of unique self-organized nanoscale morphologies. However, an understanding of how the different material and process parameters influence the formation of these nanostructures is limited. My dissertation aims to bridge this gap by developing phase-field models that can predict an entire spectrum of nanostructures as a function of processing conditions and composition in multicomponent alloys under a set of material-specific constraints. Firstly, I developed a numerical model to simulate nanoscale phase separation in codeposited immiscible binary alloy films. An investigation on the influence of deposition rates, phase-fraction, and temperature, on the evolution of self-assembled nanostructures yielded many characteristic patterns, including well-known morphologies such as the lateral and vertical concentration modulations, as well as some previously undocumented variants. I also simulated phase-separation in ternary alloyed PVD films, and studied the influence of deposition rate and composition on the evolution of self-assembled nanostructures, and recorded many novel nanoscale morphologies. I then sought to understand the role of material properties such as elastic misfit due to lattice mismatch between phases, grain boundaries formed in polycrystalline films, and the interplay of interphase and surface boundaries at the film surface. To this end, I developed phase-field models of binary PVD film deposition that incorporated these constraints and studied their role in altering the temporal and spatial characteristics of the evolving morphologies. I also investigated the formation of surface hillocks and the role of surface and interfacial energies in their evolution. By studying the change in total free energy across the different deposition models, I established that, in addition to influencing the temporal and spatial characteristics of nanoscale structures in the films, this quantity is also responsible for driving morphological transitions as the rate of deposition is increased. Insights gained from this computational study will demonstrate the viability of these models in predicting experimentally observed morphologies and form a basis for understanding the various factors involved in driving phase-separation and morphological transitions. In addition, morphology maps will serve as templates for developing new pathways for morphology control in the manufacturing of PVD alloy films.
ContributorsRaghavan, Rahul (Author) / Ankit, Kumar (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Mushongera, Leslie T (Committee member) / Arizona State University (Publisher)
Created2021
161291-Thumbnail Image.png
Description
This dissertation focuses on the structure-function relationships of nanomaterials (NMs) and some of their applications in environmental engineering. The aim is to investigate NMs of different surface chemistries and assess their interactions with biological models, evaluate the weathering impact and degradation parameters to improve polymer coatings, test their efficiency for

This dissertation focuses on the structure-function relationships of nanomaterials (NMs) and some of their applications in environmental engineering. The aim is to investigate NMs of different surface chemistries and assess their interactions with biological models, evaluate the weathering impact and degradation parameters to improve polymer coatings, test their efficiency for contaminant removal and provide further understanding in the safe design of nanomaterials. Nanoecotoxicological risk assessment currently suffers from a lack of testing procedures adapted to nanomaterials. Graphene oxide (GO) is a carbon nanomaterial (CNM) that consists of a single layer of carbon atoms arranged in a hexagonal network. It is decorated with a high density of oxygen functional groups including epoxide and hydroxyl moieties on the basal planes and carboxylic and carbonyl groups at the edges. The changes in surface chemistry give GO unique properties that can be tailored for a function. Additionally, because of its simple synthesis and flexible chemistry, GO has been a popular building block of many composite CNMs. In environmental engineering, specifically, water treatment, GO has been studied by itself or as a composite for pollutant removal, biofouling reduction, and as an antimicrobial agent, just to name a few. Like GO, silver (Ag) is another NM widely used in water treatment for its biocidal properties. Despite the recent growth in this field, a fundamental understanding of the function-structure relationships in NMs is still progressing. Through a systematic set of experiments, the structure-properties-function and structure-properties-hazard relationships were investigated. These relationships can be used to establish guidelines to engineer “safe-by-design” functional nanomaterials, where materials are tailored to enhance their function while minimizing their inherent biological or environmental hazard.
ContributorsBarrios, Ana Cecilia (Author) / Perreault, Francois (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Conroy-Ben, Otakuye (Committee member) / Hua-Wang, Qing (Committee member) / Arizona State University (Publisher)
Created2021
161252-Thumbnail Image.png
Description
The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been used for atomic-scale study of interfacial defects in low-mismatched GaAs(001)-based

The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been used for atomic-scale study of interfacial defects in low-mismatched GaAs(001)-based and high-mismatched GaSb/GaAs(001) heterostructures.Three distinct stages of strain relaxation were identified in GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures with GaAsSb film thicknesses in the range of 50 to 4000 nm capped with 50-nm-thick GaAs layers. Diffraction contrast analysis with conventional TEM revealed that although 60° dislocations were primarily formed during the initial sluggish Stage-I relaxation, 90° dislocations were also created. Many curved dislocations, the majority of which extended into the substrate, were formed during Stage-II and Stage-III relaxation. The capping layers of heterostructures with larger film thickness (500 nm onwards) exhibited only Stage-I relaxation. A decrease in dislocation density was observed at the cap/film interface of the heterostructure with 4000-nm-thick film compared to that with 2000-nm-thick film, which correlated with smoothening of surface cross-hatch morphology. Detailed consideration of plausible dislocation sources for the capping layer led to the conclusion that dislocation half-loops nucleated at surface troughs were the main source of threading dislocations in these heterostructures. Aberration-corrected STEM imaging revealed that interfacial 60° dislocations in GaAs/GaAsSb/GaAs(001) and GaAs/GaAsP/GaAs(001) heterostructures were dissociated to form intrinsic stacking faults bounded by 90° and 30° Shockley partial dislocations. The cores of the 30° partials contained single atomic columns indicating that these dislocations primarily belonged to glide set. Apart from isolated dissociated 60° dislocations, Lomer-Cottrell locks, Lomer dislocations and a novel type of dissociated 90° dislocation were observed in GaAs/GaAsSb/GaAs heterostructures. The core structure of interfacial defects in GaSb/GaAs(001) heterostructure was also investigated using aberration-corrected STEM. 90° Lomer dislocations were primarily formed; however, glide-set perfect 60° and dissociated 60° dislocations were also observed. The 5-7 atomic-ring shuffle-set dislocation, the left-displaced 6-8 atomic-ring glide-set and the right-displaced 6-8 atomic-ring glide-set dislocations were three types of Lomer dislocations that were identified, among which the shuffle-set type was most common.
ContributorsGangopadhyay, Abhinandan (Author) / Smith, David J. (Thesis advisor) / Bertoni, Mariana (Committee member) / Crozier, Peter A. (Committee member) / King, Richard R. (Committee member) / McCartney, Martha R. (Committee member) / Arizona State University (Publisher)
Created2021
161328-Thumbnail Image.png
Description
How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its performance prediction, processing, optimization and design. The goal of this

How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its performance prediction, processing, optimization and design. The goal of this research is to overcome these challenges by developing a series of novel hierarchical statistical microstructure descriptors called “n-point polytope functions” which is as known as Pn functions to quantify heterogeneous material’s microstructure and creating Pn functions related quantification methods which are Omega Metric and Differential Omega Metric to analyze its 4D processing.In this dissertation, a series of powerful programming tools are used to demonstrate that Pn functions can be used up to n=8 for chaotically scattered images which can hardly be distinguished by our naked eyes in chapter 3 to find or compare the potential configuration feature of structure such as symmetry or polygon geometry relation between the different targets when target’s multi-modal imaging is provided. These n-point statistic results calculated from Pn functions for features of interest in the microstructure can efficiently decompose the structural hidden features into a set of “polytope basis” to provide a concise, explainable, expressive, universal and efficient quantifying manner. In Chapter 4, the Pn functions can also be incorporated into material reconstruction algorithms readily for fast virtualizing 3D microstructure regeneration and also allowing instant material property prediction via analytical structure-property mappings for material design. In Chapter 5, Omega Metric and Differential Omega Metric are further created and used to provide a time-dependent reduced-dimension metric to analyze the 4D evaluation processing instead of using Pn functions directly because these 2 simplified methods can provide undistorted results to be easily compared. The real case of vapor-deposition alloy films analysis are implemented in this dissertation to demonstrate that One can use these methods to predict or optimize the design for 4D evolution of heterogeneous material. The advantages of the all quantification methods in this dissertation can let us economically and efficiently quantify, design, predict the microstructure and 4D evolution of the heterogeneous material in various fields.
ContributorsCHEN, PEI-EN (Author) / Jiao, Yang (Thesis advisor) / Ren, Yi (Thesis advisor) / Liu, Yongming (Committee member) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2021
161284-Thumbnail Image.png
Description
Lithium conducting garnets in the family of Li7La3Zr2O12 (LLZO) are promising lithium conductors for solid-state batteries, due to their high ionic conductivity, thermal stability, and electrochemical stability with metallic lithium. Despite these advantages, LLZO requires a large energy input to synthesize and process. Generally, LLZO is synthesized using solid-state reaction

Lithium conducting garnets in the family of Li7La3Zr2O12 (LLZO) are promising lithium conductors for solid-state batteries, due to their high ionic conductivity, thermal stability, and electrochemical stability with metallic lithium. Despite these advantages, LLZO requires a large energy input to synthesize and process. Generally, LLZO is synthesized using solid-state reaction (SSR) from oxide precursors, requiring high reaction temperatures (900-1000 °C) and producing powder with large particle sizes, necessitating high energy milling to improve sinterability. In this dissertation, two classes of advanced synthesis methods – sol-gel polymer-combustion and molten salt synthesis (MSS) – are employed to obtain LLZO submicron powders at lower temperatures. In the first case, nanopowders of LLZO are obtained in a few hours at 700 °C via a novel polymer combustion process, which can be sintered to dense electrolytes possessing ionic conductivity up to 0.67 mS cm-1 at room temperature. However, the limited throughput of this combustion process motivated the use of molten salt synthesis, wherein a salt mixture is used as a high temperature solvent, allowing faster interdiffusion of atomic species than solid-state reactions. A eutectic mixture of LiCl-KCl allows formation of submicrometer undoped, Al-doped, Ga-doped, and Ta-doped LLZO at 900 °C in 4 h, with total ionic conductivities between 0.23-0.46 mS cm-1. By using a highly basic molten salt medium, Ta-doped LLZO (LLZTO) can be obtained at temperatures as low as 550 °C, with an ionic conductivity of 0.61 mS cm-1. The formation temperature can be further reduced by using Ta-doped, La-excess pyrochlore-type lanthanum zirconate (La2Zr2O7, LZO) as a quasi-single-source precursor, which convert to LLZTO as low as 400 °C upon addition of a Li-source. Further, doped pyrochlores can be blended with a Li-source and directly sintered to a relative density up to 94.7% with high conductivity (0.53 mS cm-1). Finally, a propensity for compositional variation in LLZTO powders and sintered ceramics was observed and for the first time explored in detail. By comparing LLZTO obtained from combustion, MSS, and SSR, a correlation between increased elemental inhomogeneity and reduced ionic conductivity is observed. Implications for garnet-based solid-state batteries and strategies to mitigate elemental inhomogeneity are discussed.
ContributorsWeller, Jon Mark (Author) / Chan, Candace K (Thesis advisor) / Crozier, Peter (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021
161447-Thumbnail Image.png
Description
Two-dimensional (2D) materials have nanometer-scale thickness in one dimension but macroscopic sizes in the other two dimensions and have unique physical and chemical properties that arise from this dimensionality. For example, atomically thin forms of semiconducting materials like transition metal dichalcogenides (TMDs) have attracted significant attention for electric and optical

Two-dimensional (2D) materials have nanometer-scale thickness in one dimension but macroscopic sizes in the other two dimensions and have unique physical and chemical properties that arise from this dimensionality. For example, atomically thin forms of semiconducting materials like transition metal dichalcogenides (TMDs) have attracted significant attention for electric and optical device applications due to their tunable bandgaps. Most 2D materials are derived from layered materials with weak van der Waals (vdW) bonds between layers, but more recently, non-vdW materials with stronger bonds and non-layered structures have also been formed into nanosheets. Because of their aspect ratios, surface chemistry plays a substantial role in both vdW- and non-vdW-derived 2D materials, and involves intercalation and exfoliation, surface modification and functionalization, which contribute to their use in diverse applications. In this thesis, the materials chemistry of nanosheets from both vdW and non-vdW materials has been studied. First, this work demonstrates the covalent functionalization of a new rising 2D material in the TMDs family, palladium diselenide (PdSe2), which has a layer-dependent bandgap and is much more stable in air than many other 2D materials. Aryl diazonium salts were used to functionalize monolayer PdSe2 nanosheets, and the reaction kinetics were studied as a function of reaction time and concentrations. Raman spectroscopy suggests the structure of PdSe2 is undisturbed after functionalization, which will expand its future applications in areas like electronics, sensors, and energy storage. Next, liquid-phase exfoliation (LPE), an economical, scalable, and efficient method, was used to produce nanosheets of two types of non-vdW materials: metal diborides (MB2) which are a family of ceramic materials with a layered structure, and boron carbide (B4C), a non-layered material with covalent bonding. Quasi-2D nanosheets were formed from eight different metal diborides, with sizes and thicknesses that were found to correlate with the hardness of the bulk compounds. CrB2 nanosheets incorporated into polyvinyl alcohol (PVA) thin films showed enhanced mechanical properties that exceed the specific performance of additives from other 2D materials. Boron carbide, the third hardest known material, has also been successfully exfoliated into ultrathin by LPE. Combined theory and experiment show the rich surface structures of B4C nanosheets.
ContributorsGuo, Yuqi (Author) / Wang, Qing Hua QW (Thesis advisor) / Green, Alexander AG (Committee member) / Jiao, Yang YJ (Committee member) / Arizona State University (Publisher)
Created2021
161460-Thumbnail Image.png
Description
There is a high demand for customized designs of various types of cement-based materials in order to address specific purposes in the construction field. These demands stem from the need to optimize the cementitious matrix properties and reinforcement choices, especially in high reliability, durability, and performance applications that include infrastructure,

There is a high demand for customized designs of various types of cement-based materials in order to address specific purposes in the construction field. These demands stem from the need to optimize the cementitious matrix properties and reinforcement choices, especially in high reliability, durability, and performance applications that include infrastructure, energy production, commercial buildings, and may ultimately be extended to low risk/high volume applications such as residential applications. The typical tools required to guide practicing engineers should be based on optimization algorithms that require highly efficient capacity and design alternatives and optimal computational tools. The general case of flexural design of members is an important aspect of design of structural members which can be extended to a variety of applications that include various cross-sections such as rectangular, W-sections, channels, angles, and T sections. The model utilized the simplified linear constitutive response of cement-based composite in compression and tension and extends into a two-segment elastic-plastic, strain softening, hardening, tension-stiffening, and a multi-segment system. The generalized parametric model proposed uses a dimensionless system in the stress-strain materials diagram to formulate piecewise equations for an equilibrium of internal stresses and obtains strain distributions for the closed-form solution of neutral axis location. This would allow for the computation of piecewise moment-curvature response. The number of linear residual stress implemented is flexible to a user to maintain a robust response. In the present approach bilinear, trilinear, and quad-linear models are addressed and a procedure for incorporating additional segments is presented. Moreover, a closed-form solution of moment-curvature can be solved and employed in calculating load-deflection response. The model is adaptable for various types of fiber-reinforced and textile reinforced concrete (FRC, TRC, UHPC, AAC, and Reinforced Concrete). The extensions to cover continuous fiber reinforcement such as textile reinforced concrete (TRC, FRCM) strengthening and repair are addressed. The theoretical model is extended to incorporate the hybrid design (HRC) with continuous rebar with FRC to increase the ductility and ultimate moment capacity. HRC extends the performance of the fiber system to incorporate residual capacity into a serviceability-based design that reduced the reliance on the design based on the limit state. The design chart for HRC and as well as conventional RC has been generated for practicing engineering applications. Results are compared to a large array of data from experimental results conducted at the ASU structural lab facilities and other published literature.
Contributorspleesudjai, chidchanok (Author) / Mobasher, Barzin (Thesis advisor) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam (Committee member) / Arizona State University (Publisher)
Created2021