Matching Items (3)

Filtering by

Clear all filters

Structural Health Monitoring: Acoustic Emissions

Description

Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally,

Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally, they can typically be used while the material is in active use instead of needing downtime for inspection.
The two general categories of structural health monitoring (SHM) systems include passive and active monitoring. Active SHM systems utilize an input of energy to monitor the health of a structure (such as sound waves in ultrasonics), while passive systems do not. As such, passive SHM tends to be more desirable. A system could be permanently fixed to a critical location, passively accepting signals until it records a damage event, then localize and characterize the damage. This is the goal of acoustic emissions testing.
When certain types of damage occur, such as matrix cracking or delamination in composites, the corresponding release of energy creates sound waves, or acoustic emissions, that propagate through the material. Audio sensors fixed to the surface can pick up data from both the time and frequency domains of the wave. With proper data analysis, a time of arrival (TOA) can be calculated for each sensor allowing for localization of the damage event. The frequency data can be used to characterize the damage.
In traditional acoustic emissions testing, the TOA combined with wave velocity and information about signal attenuation in the material is used to localize events. However, in instances of complex geometries or anisotropic materials (such as carbon fibre composites), velocity and attenuation can vary wildly based on the direction of interest. In these cases, localization can be based off of the time of arrival distances for each sensor pair. This technique is called Delta T mapping, and is the main focus of this study.

Contributors

Created

Date Created
2019-05

150833-Thumbnail Image.png

Damage detection in blade-stiffened anisotropic composite panels using lamb wave mode conversions

Description

Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance

Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components are often manually inspected to detect the presence of damage. This technique, known as schedule based maintenance, however, is expensive, time-consuming, and often limited to easily accessible structural elements. Therefore, there is an increased demand for robust and efficient Structural Health Monitoring (SHM) techniques that can be used for Condition Based Monitoring, which is the method in which structural components are inspected based upon damage metrics as opposed to flight hours. SHM relies on in situ frameworks for detecting early signs of damage in exposed and unexposed structural elements, offering not only reduced number of schedule based inspections, but also providing better useful life estimates. SHM frameworks require the development of different sensing technologies, algorithms, and procedures to detect, localize, quantify, characterize, as well as assess overall damage in aerospace structures so that strong estimations in the remaining useful life can be determined. The use of piezoelectric transducers along with guided Lamb waves is a method that has received considerable attention due to the weight, cost, and function of the systems based on these elements. The research in this thesis investigates the ability of Lamb waves to detect damage in feature dense anisotropic composite panels. Most current research negates the effects of experimental variability by performing tests on structurally simple isotropic plates that are used as a baseline and damaged specimen. However, in actual applications, variability cannot be negated, and therefore there is a need to research the effects of complex sample geometries, environmental operating conditions, and the effects of variability in material properties. This research is based on experiments conducted on a single blade-stiffened anisotropic composite panel that localizes delamination damage caused by impact. The overall goal was to utilize a correlative approach that used only the damage feature produced by the delamination as the damage index. This approach was adopted because it offered a simplistic way to determine the existence and location of damage without having to conduct a more complex wave propagation analysis or having to take into account the geometric complexities of the test specimen. Results showed that even in a complex structure, if the damage feature can be extracted and measured, then an appropriate damage index can be associated to it and the location of the damage can be inferred using a dense sensor array. The second experiment presented in this research studies the effects of temperature on damage detection when using one test specimen for a benchmark data set and another for damage data collection. This expands the previous experiment into exploring not only the effects of variable temperature, but also the effects of high experimental variability. Results from this work show that the damage feature in the data is not only extractable at higher temperatures, but that the data from one panel at one temperature can be directly compared to another panel at another temperature for baseline comparison due to linearity of the collected data.

Contributors

Agent

Created

Date Created
2012

152982-Thumbnail Image.png

Multiscale modeling of heterogeneous material systems

Description

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range of sensors and detection techniques, for both metallic materials and composites. However, detecting damage at the microscale is not possible with commercially available sensors. A probable way to approach this problem is through accurate and efficient multiscale modeling techniques, which are capable of tracking damage initiation at the microscale and propagation across the length scales. The output from these models will provide an improved understanding of damage initiation; the knowledge can be used in conjunction with information from physical sensors to improve the size of detectable damage. In this research, effort has been dedicated to develop multiscale modeling approaches and associated damage criteria for the estimation of damage evolution across the relevant length scales. Important issues such as length and time scales, anisotropy and variability in material properties at the microscale, and response under mechanical and thermal loading are addressed. Two different material systems have been studied: metallic material and a novel stress-sensitive epoxy polymer.

For metallic material (Al 2024-T351), the methodology initiates at the microscale where extensive material characterization is conducted to capture the microstructural variability. A statistical volume element (SVE) model is constructed to represent the material properties. Geometric and crystallographic features including grain orientation, misorientation, size, shape, principal axis direction and aspect ratio are captured. This SVE model provides a computationally efficient alternative to traditional techniques using representative volume element (RVE) models while maintaining statistical accuracy. A physics based multiscale damage criterion is developed to simulate the fatigue crack initiation. The crack growth rate and probable directions are estimated simultaneously.

Mechanically sensitive materials that exhibit specific chemical reactions upon external loading are currently being investigated for self-sensing applications. The "smart" polymer modeled in this research consists of epoxy resin, hardener, and a stress-sensitive material called mechanophore The mechanophore activation is based on covalent bond-breaking induced by external stimuli; this feature can be used for material-level damage detections. In this work Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is used as the cyclobutane-based mechanophore (stress-sensitive) material in the polymer matrix. The TCE embedded polymers have shown promising results in early damage detection through mechanically induced fluorescence. A spring-bead based network model, which bridges nanoscale information to higher length scales, has been developed to model this material system. The material is partitioned into discrete mass beads which are linked using linear springs at the microscale. A series of MD simulations were performed to define the spring stiffness in the statistical network model. By integrating multiple spring-bead models a network model has been developed to represent the material properties at the mesoscale. The model captures the statistical distribution of crosslinking degree of the polymer to represent the heterogeneous material properties at the microscale. The developed multiscale methodology is computationally efficient and provides a possible means to bridge multiple length scales (from 10 nm in MD simulation to 10 mm in FE model) without significant loss of accuracy. Parametric studies have been conducted to investigate the influence of the crosslinking degree on the material behavior. The developed methodology has been used to evaluate damage evolution in the self-sensing polymer.

Contributors

Agent

Created

Date Created
2014