Matching Items (160)
Filtering by

Clear all filters

Description
The focus of this research is to investigate methods for material substitution for the purpose of re-engineering legacy systems that involves incomplete information about form, fit and function of replacement parts. The primary motive is to extract as much useful information about a failed legacy part as possible and use

The focus of this research is to investigate methods for material substitution for the purpose of re-engineering legacy systems that involves incomplete information about form, fit and function of replacement parts. The primary motive is to extract as much useful information about a failed legacy part as possible and use fuzzy logic rules for identifying the unknown parameter values. Machine elements can fail by any number of failure modes but the most probable failure modes based on the service condition are considered critical failure modes. Three main parameters are of key interest in identifying the critical failure mode of the part. Critical failure modes are then directly mapped to material properties. Target material property values are calculated from material property values obtained from the originally used material and from the design goals. The material database is searched for new candidate materials that satisfy the goals and constraints in manufacturing and raw stock availability. Uncertainty in the extracted data is modeled using fuzzy logic. Fuzzy member functions model the imprecise nature of data in each available parameter and rule sets characterize the imprecise dependencies between the parameters and makes decisions in identifying the unknown parameter value based on the incompleteness. A final confidence level for each material in a pool of candidate material is a direct indication of uncertainty. All the candidates satisfy the goals and constraints to varying degrees and the final selection is left to the designer's discretion. The process is automated by software that inputs incomplete data; uses fuzzy logic to extract more information and queries the material database with a constrained search for finding candidate alternatives.
ContributorsBalaji, Srinath (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph (Committee member) / Huebner, Kenneth (Committee member) / Arizona State University (Publisher)
Created2011
150301-Thumbnail Image.png
Description
This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice

This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2.
ContributorsTucker, Jon R (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Newman, Nathan (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2011
150393-Thumbnail Image.png
Description
ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D

ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D GB network to look into the effects of GB characteristics on this phenomenon, with emphasis on conditions that can lead to percolation. A finite element model was created based on the microstructure of a depleted UO2 sample characterized by Electron Backscattering Diffraction (EBSD). The GBs were categorized into high (D2), low (D1) and bulk diffusivity (Dbulk) based on their misorientation angles and Coincident Site Lattice (CSL) types. The simulation was run using different diffusivity ratios (D2/Dbulk) ranging from 1 to 10^8. The model was set up in three ways: constant temperature case, temperature gradient effects and window methods that mimic the environments in a Light Water Reactor (LWR). In general, the formation of percolation paths was observed at a ratio higher than 10^4 in the measured GB network, which had a 68% fraction of high diffusivity GBs. The presence of temperature gradient created an uneven concentration distribution and decreased the overall mass flux. Finally, radial temperature and fission gas concentration profiles were obtained for a fuel pellet in operation using an approximate 1-D model. The 100 µm long microstructurally explicit model was used to simulate, to the scale of a real UO2 pellet, the mass transport at different radial positions, with boundary conditions obtained from the profiles. Stronger percolation effects were observed at the intermediate and periphery position of the pellet. The results also showed that highest mass flux happens at the edge of a pellet at steady state to accommodate for the sharp concentration drop.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Dey, Sandwip (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
149985-Thumbnail Image.png
Description
The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on

The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite Element (FE) model's ability to predict experimental results. First, the steel projectile is modeled using Johnson-Cook material model and provides a more realistic behavior in the FE ballistic models. This is particularly noticeable when comparing FE models with laboratory tests where large deformations in projectiles are observed. Second, follow-up analysis of the results obtained through the new picture frame tests conducted at ASU provides new values for the shear moduli and corresponding strains. The new approach for analysis of data from picture frame tests combines digital image analysis and a two-level factorial optimization formulation. Finally, an additional improvement in the material model for Kevlar involves checking the convergence at variation of mesh density of fabrics. The study performed and described herein shows the converging trend, therefore validating the FE model.
ContributorsMorea, Mihai I (Author) / Rajan, Subramaniam D. (Thesis advisor) / Arizona State University (Publisher)
Created2011
149810-Thumbnail Image.png
Description
This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high-Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by

This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high-Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by microwave absorption The increasing necessity for quicker and more efficient processing techniques motivates study of the use of a single frequency applicator microwave cavity along with a Fe2O3 infused SiC-alumina susceptor/applicator as an alternative post implantation process. Arsenic implanted Si samples of different dopant concentrations and implantation energies were studied pre and post microwave annealing. A set of as-implanted Si samples were also used to assess the effect of inactive dopants against presence of electrically active dopants on the recrystallization mechanisms. The extent of damage repair and Si recrystallization of the damage caused by arsenic and Si implantation of Si is determined by cross-section transmission electron microscopy and Raman spectroscopy. Dopant activation is evaluated for the As implanted Si by sheet resistance measurements. For the same, secondary ion mass spectroscopy analysis is used to compare the extent of diffusion that results from such microwave annealing with that experienced when using conventional rapid thermal annealing (RTA). Results show that compared to susceptor assisted microwave annealing, RTA caused undesired dopant diffusion. The SiC-alumina susceptor plays a predominant role in supplying heat to the Si substrate, and acts as an assistor that helps a high-Z dopant like arsenic to absorb the microwave energy using a microwave loss mechanism which is a combination of ionic and dipole losses. Comparisons of annealing of the samples were done with and without the use of the susceptor, and confirm the role played by the susceptor, since the samples donot recrystallize when the surface heating mechanism provided by the susceptor is not incorporated. Variable frequency microwave annealing was also performed over the as-implanted Si samples for durations and temperatures higher than the single frequency microwave anneal, but only partial recrystallization of the damaged layer was achieved.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
149945-Thumbnail Image.png
Description
Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative

Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538oC in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile strength. Micropillar compression experiments of both as sintered and thermally aged material allowed for investigation of the effect of thermal aging.
ContributorsStewart, Jennifer (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150556-Thumbnail Image.png
Description
In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to

In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to find out the properties of Erbium Chloride Silicate (ECS) and two segment CdS-CdSe samples. In the first part of my research, growth of very new material, Erbium Chloride Silicate (ECS), in form of core/shell Si/ECS and pure ECS nanowires, was demonstrated. This new material has very fascinating properties for new Si based photonic devices. The Erbium density in those nanowires is which is very high value compared to the other Erbium doped materials. It was shown that the luminescence peaks of ECS nanowires are very sharp and stronger than their counterparts. Furthermore, both PL and XRD peaks get sharper and stronger as growth temperature increases and this shows that crystalline quality of ECS nanowires gets better with higher temperature. In the second part, I did a very detail research for growing two segment axial nanowires or radial belts and report that the structure type mostly depends on the growth temperature. Since our final step is to create white light LEDs using single axial nanowires which have three different regions grown with distinct materials and give red, green and blue colors simultaneously, we worked on growing CdS-CdSe nanowires or belts for the first step of our aim. Those products were successfully grown and they gave two luminescence peaks with maximum 160 nm wavelength separation depending on the growth conditions. It was observed that products become more likely belt once the substrate temperature increases. Also, dominance between VLS and VS is very critical to determine the shape of the products and the substitution of CdS by CdSe is very effective; hence, CdSe growth time should be chosen accordingly. However, it was shown two segmented products can be synthesized by picking the right conditions and with very careful analyses. We also demonstrated that simultaneous two colors lasing from a single segmented belt structures is possible with strong enough-pumping-power.
ContributorsTurkdogan, Sunay (Author) / Ning, Cun-Zheng (Thesis advisor) / Tao, Meng (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150104-Thumbnail Image.png
Description
A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior

A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior of a wrought Al alloy (2024-T351) is studied using notched uniaxial samples with load axes along either the longitudinal or transverse direction, and center notched biaxial samples (cruciforms) with a uniaxial stress state of equivalent amplitude about the bore. Local composition and crystallography were quantified before testing using Energy Dispersive Spectroscopy and Electron Backscattering Diffraction. Interrupted fatigue testing at stresses close to yielding was performed on the samples to nucleate and propagate short cracks and nucleation sites were located and characterized using standard optical and Scanning Electron Microscopy. Results show that crack nucleation occurred due to fractured particles for longitudinal dogbone/cruciform samples; while transverse samples nucleated cracks by debonded and fractured particles. Change in crack nucleation mechanism is attributed to dimensional change of particles with respect to the material axes caused by global anisotropy. Crack nucleation from debonding reduced life till matrix fracture because debonded particles are sharper and generate matrix cracks sooner than their fractured counterparts. Longitudinal samples experienced multisite crack initiation because of reduced cross sectional areas of particles parallel to the loading direction. Conversely the favorable orientation of particles in transverse samples reduced instances of particle fracture eliminating multisite cracking and leading to increased fatigue life. Cyclic tests of cruciform samples showed that crack growth favors longitudinal and transverse directions with few instances of crack growth 45 degrees (diagonal) to the rolling direction. The diagonal crack growth is attributed to stronger influences of local anisotropy on crack nucleation. It was observed that majority of the time crack nucleation is governed by the mixed influences of global and local anisotropies. Measurements of crystal directions parallel to the load on main crack paths revealed directions clustered near the {110} planes and high index directions. This trend is attributed to environmental effects as a result of cyclic testing in air.
ContributorsMakaš, Admir (Author) / Peralta, Pedro D. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150071-Thumbnail Image.png
Description
In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user

In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user to do that by keeping every parameter used to define a material, within the non-parabolic band approximation, a variable in the control of the user. A material is defined by defining its valleys, energies, valley effective masses and their directions. The types of scattering to be included can also be chosen. The non-parabolic band structure model is used. With the deployment of the generalized Monte Carlo tool onto www.nanoHUB.org the tool will be available to users around the world. This makes it a very useful educational tool that can be incorporated into curriculums. The tool is integrated with Rappture, to allow user-friendly access of the tool. The user can freely define a material in an easy systematic way without having to worry about the coding involved. The output results are automatically graphed and since the code incorporates an analytic band structure model, it is relatively fast. The versatility of the tool has been investigated and has produced results closely matching the experimental values for some common materials. The tool has been uploaded onto www.nanoHUB.org by integrating it with the Rappture interface. By using Rappture as the user interface, one can easily make changes to the current parameter sets to obtain even more accurate results.
ContributorsHathwar, Raghuraj (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011