Matching Items (732)
Filtering by

Clear all filters

151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
151418-Thumbnail Image.png
Description
ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of

ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
ContributorsDaugherty, Robin (Author) / Allee, David R. (Thesis advisor) / Chae, Junseok (Thesis advisor) / Aberle, James T (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
151425-Thumbnail Image.png
Description
HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission

HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission electron microscopy (TEM) imaging and analytical techniques was used in the characterization of epitaxial HgCdTe and related materials and substrates for third generation IR detectors. ZnTe layers grown on Si substrates are considered to be promising candidates for lattice-matched, large-area, and low-cost composite substrates for deposition of II-VI and III-V compound semiconductors with lattice constants near 6.1 Å. After optimizing MBE growth conditions including substrate pretreatment prior to film growth, as well as nucleation and growth temperatures, thick ZnTe/Si films with high crystallinity, low defect density, and excellent surface morphology were achieved. Changes in the Zn/Te flux ratio used during growth were also investigated. Small-probe microanalysis confirmed that a small amount of As was present at the ZnTe/Si interface. A microstructural study of HgCdTe/CdTe/GaAs (211)B and CdTe/GaAs (211)B heterostructures grown using MBE was carried out. High quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed. In the case of HgCdTe/CdTe/ GaAs(211)B, thin HgTe buffer layers between HgCdTe and CdTe were also investigated for improving the HgCdTe crystal quality. A set of ZnTe layers epitaxially grown on GaSb(211)B substrates using MBE was studied using high resolution X-ray diffraction (HRXRD) measurements and TEM characterization in order to investigate conditions for defect-free growth. HRXRD results gave critical thickness estimates between 350 nm and 375 nm, in good agreement with theoretical predictions. Moreover, TEM results confirmed that ZnTe layers with thicknesses of 350 nm had highly coherent interfaces and very low dislocation densities, unlike samples with the thicker ZnTe layers.
ContributorsKim, Jae Jin (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Committee member) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / Arizona State University (Publisher)
Created2012
152535-Thumbnail Image.png
Description
Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision making before they encounter real life

Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision making before they encounter real life patients. The utility of a recursive, inductive VPS for increasing clinical decision-making skills, collaboration, or engagement is unknown. Following a design-based methodology, VPS were implemented in two phases with two different cohorts of first year medical students: spring and fall of 2013. Participants were 108 medical students and six of their clinical faculty tutors. Students collaborated in teams of three to complete a series of virtual patient cases, submitting a ballpark diagnosis at the conclusion of each session. Student participants subsequently completed an electronic, 28-item Exit Survey. Finally, students participated in a randomized controlled trial comparing traditional (tutor-led) and VPS case instruction methods. This sequence of activities rendered quantitative and qualitative data that were triangulated during data analysis to increase the validity of findings. After practicing through four VPS cases, student triad teams selected accurate ballpark diagnosis 92 percent of the time. Pre-post test results revealed that PPT was significantly more effective than VPS after 20 minutes of instruction. PPT instruction resulted in significantly higher learning gains, but both modalities supported significant learning gains in clinical reasoning. Students collaborated well and held rich clinical discussions; the central phenomenon that emerged was "synthesizing evidence inductively to make clinical decisions." Using an inductive process, student teams collaborated to analyze patient data, and in nearly all instances successfully solved the case, while remaining cognitively engaged. This is the first design-based study regarding virtual patient simulation, reporting iterative phases of implementation and design improvement, culminating in local theories (petite generalizations) about VPS design. A thick, rich description of environment, process, and findings may benefit other researchers and institutions in designing and implementing effective VPS.
ContributorsMcCoy, Lise (Author) / Wetzel, Keith (Thesis advisor) / Ewbank, Ann (Thesis advisor) / Simon, Harvey (Committee member) / Arizona State University (Publisher)
Created2014
152401-Thumbnail Image.png
Description
ABSTRACT Current federal and state education mandates were developed to make schools accountable for student performance with the rationale that schools, teachers, and students will improve through the administration of high-stakes tests. Public schools are mandated to adhere to three accountability systems: national, state, and local. Additional elements include the

ABSTRACT Current federal and state education mandates were developed to make schools accountable for student performance with the rationale that schools, teachers, and students will improve through the administration of high-stakes tests. Public schools are mandated to adhere to three accountability systems: national, state, and local. Additional elements include the recent implementation of the Common Core standards and newly devised state accountability systems that are granted through waivers as an alternative to the accountability mandates in the No Child Left Behind Act NCLB of 2001. Teachers' voices have been noticeably absent from the accountability debates, but as studies show, as primary recipients of accountability sanctions, many teachers withdraw, "burn out," or leave the profession altogether. The present study is based on the premise that teachers are vital to student achievement, and that their perspectives and understandings are therefore a resource for educational reform especially in light of the accountability mandates under NCLB. With that premise as a starting point, this dissertation examines practicing urban teachers' experiences of accountability in culturally and linguistically diverse schools. To fulfill these goals, this qualitative study used individual and focus group interviews and observations with veteran elementary school teachers in an urban Southwestern public school district, to ascertain practices they perceive to be effective. The study's significance lies in informing stakeholders, researchers, and policymakers of practicing teachers' input on accountability mandates in diverse urban schools.
ContributorsGishey, Rhiannon L (Author) / Mccarty, Teresa L (Thesis advisor) / Fischman, Gustavo E (Committee member) / Ikeler, Susan (Committee member) / Arizona State University (Publisher)
Created2013
152319-Thumbnail Image.png
Description
In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably,

In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably, which requires the junctions to be more thermally stable than current Nb/Al-AlOx/Nb junctions. Based on thermodynamics, Hf was chosen to produce thermally stable Nb/Hf-HfOx/Nb superconductor tunnel Josephson junctions that can be grown or processed at elevated temperatures. Also elevated synthesis temperatures improve the structural and electrical properties of Nb electrode layers that could potentially improve junction device performance. The refractory nature of Hf, HfO2 and Nb allow for the formation of flat, abrupt and thermally-stable interfaces. But the current Al-based barrier will have problems when using with high-temperature grown and high-quality Nb. So our work is aimed at using Nb grown at elevated temperatures to fabricate thermally stable Josephson tunnel junctions. As a junction barrier metal, Hf was studied and compared with the traditional Al-barrier material. We have proved that Hf-HfOx is a good barrier candidate for high-temperature synthesized Josephson junction. Hf deposited at 500 °C on Nb forms flat and chemically abrupt interfaces. Nb/Hf-HfOx/Nb Josephson junctions were synthesized, fabricated and characterized with different oxidizing conditions. The results of materials characterization and junction electrical measurements are reported and analyzed. We have improved the annealing stability of Nb junctions and also used high-quality Nb grown at 500 °C as the bottom electrode successfully. Adding a buffer layer or multiple oxidation steps improves the annealing stability of Josephson junctions. We also have attempted to use the Atomic Layer Deposition (ALD) method for the growth of Hf oxide as the junction barrier and got tunneling results.
ContributorsHuang, Mengchu, 1987- (Author) / Newman, Nathan (Thesis advisor) / Rowell, John M. (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152592-Thumbnail Image.png
Description
Public demands for accountability and educational change are at an all-time high. No Child Left Behind set the stage for public accountability of educators and the recently created Race to the Top grant raised the stakes of public school accountability even more with the creation of national standards and assessments

Public demands for accountability and educational change are at an all-time high. No Child Left Behind set the stage for public accountability of educators and the recently created Race to the Top grant raised the stakes of public school accountability even more with the creation of national standards and assessments as well as public accountability of individual teacher performance based on student test scores. This high-stakes context has placed pressure on local schools to change their instructional practices rapidly to ensure students are learning what they need to in order to perform well on looming Partnership for Assessment of Readiness for College and Careers (PARCC) exams. The purpose of this mixed methods action research study was to explore a shared leadership model and discover the impact of a change facilitation team using the Concerns Based Adoption Model tools on the speed and quality of innovation diffusion at a Title One elementary school. The nine-member change facilitation team received support for 20 weeks in the form of professional development and ongoing team coaching as a means to empower teacher-leaders to more effectively take on the challenges of change. Eight of those members participated in this research. This approach draws on the research on change, learning organizations, and coaching. Quantitative results from the Change Facilitator Stages of Concern Questionnaire were triangulated with qualitative data from interviews, field notes, and Innovation Configuration Maps. Results show the impact on instructional innovation when teacher-leadership is leveraged to support change. Further, there is an important role for change coaches when leading change initiatives. Implications from this study can be used to support other site leaders grappling with instructional innovation and calls for additional research.
ContributorsCruz, Jennifer (Author) / Zambo, Debby (Thesis advisor) / Foulger, Teresa (Committee member) / Tseunis, Paula (Committee member) / Arizona State University (Publisher)
Created2014
152606-Thumbnail Image.png
Description
GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to

GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to obtain the device performance described by detailed balance theory. The photon recycling model has been developed and was applied to investigate the loss mechanisms in the state-of-the-art GaAs-based solar cell structures using PC1D software. A standard fabrication process of the GaAs-based solar cells is as follows: wafer preparation, individual cell isolation by mesa, n- and p-type metallization, rapid thermal annealing (RTA), cap layer etching, and anti-reflection coating (ARC). The growth rate for GaAs-based materials is one of critical factors to determine the cost for the growth of GaAs-based solar cells. The cost for fabricating GaAs-based solar cells can be reduced if the growth rate is increased without degrading the crystalline quality. The solar cell wafers grown at different growth rates of 14 μm/hour and 55 μm/hour were discussed in this work. The structural properties of the wafers were characterized by X-ray diffraction (XRD) to identify the crystalline quality, and then the as-grown wafers were fabricated into solar cell devices under the same process conditions. The optical and electrical properties such as surface reflection, external quantum efficiency (EQE), dark I-V, Suns-Voc, and illuminated I-V under one sun using a solar simulator were measured to compare the performances of the solar cells with different growth rates. Some simulations in PC1D have been demonstrated to investigate the reasons of the different device performances between fast growth and slow growth structures. A further analysis of the minority carrier lifetime is needed to investigate into the difference in device performances.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Arizona State University (Publisher)
Created2014
152463-Thumbnail Image.png
Description
Estimation of complex permittivity of arsenic-doped silicon is the primary topic of discussion in this thesis presentation. The frequency that is of interest is 2.45 GHz, frequency typically used in conventional microwave ovens. The analysis is based on closed-form analytical expressions of cylindrical symmetry. A coaxial/radial line junction with the

Estimation of complex permittivity of arsenic-doped silicon is the primary topic of discussion in this thesis presentation. The frequency that is of interest is 2.45 GHz, frequency typically used in conventional microwave ovens. The analysis is based on closed-form analytical expressions of cylindrical symmetry. A coaxial/radial line junction with the central conductor sheathed in dielectric material, which is As-doped silicon in this case, are analyzed. Electrical and magnetic field equations governing the wave propagation in this setup are formulated by applying the necessary boundary conditions. Input admittance is computed using the fields in the device and reflection coefficient is calculated at the input. This analytical solution is matched to the reflection coefficient acquired by experiments conducted, using VNA as the input source. The contemplation is backed by simulation using High Frequency Structural Simulator, HFSS. Susceptor-assisted microwave heating has been shown to be a faster and easier method of annealing arsenic-doped silicon samples. In that study, it was noticed that the microwave power absorbed by the sample can directly be linked to the heat power required for the annealing process. It probes the validity of the statement that for arsenic-doped silicon the heating curve depends only on its sheet properties and not on the bulk as such and the results presented here gives more insight to it as to why this assumption is true. The results obtained here can be accepted as accurate since it is known that this material is highly conductive and electromagnetic waves do not penetrate in to the material beyond a certain depth, which is given by the skin depth of the material. Hall measurements and four-point-probe measurements are performed on the material in support of the above contemplation.
ContributorsVaradan, Siddharth Kulasekhar (Author) / Alford, Terry L. (Thesis advisor) / Pan, George W (Thesis advisor) / Myhajlenko, Stefan (Committee member) / Arizona State University (Publisher)
Created2014
152275-Thumbnail Image.png
Description
With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core

With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core material, amorphous Co-Zr-Ta-B, was incorporated into on-chip and in-package inductors in order to scale down inductors and improve inductors performance in both inductance density and quality factor. With two layers of 500 nm Co-Zr-Ta-B films a 3.5X increase in inductance and a 3.9X increase in quality factor over inductors without magnetic films were measured at frequencies as high as 1 GHz. By laminating technology, up to 9.1X increase in inductance and more than 5X increase in quality factor (Q) were obtained from stripline inductors incorporated with 50 nm by 10 laminated films with a peak Q at 300 MHz. It was also demonstrated that this peak Q can be pushed towards high frequency as far as 1GHz by a combination of patterning magnetic films into fine bars and laminations. The role of magnetic vias in magnetic flux and eddy current control was investigated by both simulation and experiment using different patterning techniques and by altering the magnetic via width. Finger-shaped magnetic vias were designed and integrated into on-chip RF inductors improving the frequency of peak quality factor from 400 MHz to 800 MHz without sacrificing inductance enhancement. Eddy current and magnetic flux density in different areas of magnetic vias were analyzed by HFSS 3D EM simulation. With optimized magnetic vias, high frequency response of up to 2 GHz was achieved. Furthermore, the effect of applied magnetic field on on-chip inductors was investigated for high power applications. It was observed that as applied magnetic field along the hard axis (HA) increases, inductance maintains similar value initially at low fields, but decreases at larger fields until the magnetic films become saturated. The high frequency quality factor showed an opposite trend which is correlated to the reduction of ferromagnetic resonant absorption in the magnetic film. In addition, experiments showed that this field-dependent inductance change varied with different patterned magnetic film structures, including bars/slots and fingers structures. Magnetic properties of Co-Zr-Ta-B films on standard organic package substrates including ABF and polyimide were also characterized. Effects of substrate roughness and stress were analyzed and simulated which provide strategies for integrating Co-Zr-Ta-B into package inductors and improving inductors performance. Stripline and spiral inductors with Co-Zr-Ta-B films were fabricated on both ABF and polyimide substrates. Maximum 90% inductance increase in hundreds MHz frequency range were achieved in stripline inductors which are suitable for power delivery applications. Spiral inductors with Co-Zr-Ta-B films showed 18% inductance increase with quality factor of 4 at frequency up to 3 GHz.
ContributorsWu, Hao (Author) / Yu, Hongbin (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Chickamenahalli, Shamala (Committee member) / Arizona State University (Publisher)
Created2013