Matching Items (592)

Filtering by

Clear all filters

149778-Thumbnail Image.png

Promoting meaningful uses of technology in a middle school

Description

Federal education policies call for school district leaders to promote classroom technology integration to prepare students with 21st century skills. However, schools are struggling to integrate technology effectively, with students often reporting that they feel like they need to power

Federal education policies call for school district leaders to promote classroom technology integration to prepare students with 21st century skills. However, schools are struggling to integrate technology effectively, with students often reporting that they feel like they need to power down and step back in time technologically when they enter classrooms. The lack of meaningful technology use in classrooms indicates a need for increased teacher preparation. The purpose of this study was to investigate the impact a coaching model of professional development had on school administrators` abilities to increase middle school teachers` technology integration in their classrooms. This study attempted to coach administrators to develop and articulate a vision, cultivate a culture, and model instruction relative to the meaningful use of instructional technology. The study occurred in a middle school. Data for this case study were collected via administrator interviews, the Principal`s Computer Technology Survey, structured observations using the Higher Order Thinking, Engaged Learning, Authentic Learning, Technology Use protocol, field notes, the Technology Integration Matrix, teacher interviews, and a research log. Findings concluded that cultivating change in an organization is a complex process that requires commitment over an extended period of time. The meaningful use of instructional technology remained minimal at the school during fall 2010. My actions as a change agent informed the school`s administrators about the role meaningful use of technology can play in instruction. Limited professional development, administrative vision, and expectations minimized the teachers` meaningful use of instructional technology; competing priorities and limited time minimized the administrators` efforts to improve the meaningful use of instructional technology. Realizing that technology proficient teachers contribute to student success with technology, it may be wise for administrators to incorporate technology-enriched professional development and exercise their leadership abilities to promote meaningful technology use in classrooms.

Contributors

Agent

Created

Date Created
2011

149782-Thumbnail Image.png

Electrospinning of bioactive dex-PAA hydrogel fibers

Description

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to fragment electrospun hydrogel fibers, and in which surface coatings were made via simple electrostatic interaction and dehydration. These versatile features enable fibrous surface coatings to be applied to virtually any material. Results of this research broadly impact the design of biomaterials which contact cells in the body by directing the consequent cell-material interaction.

Contributors

Agent

Created

Date Created
2011

149682-Thumbnail Image.png

Leveraging faculty and peer leaders to promote commuter student co-curricular engagement: a collegiate retention intervention study

Description

It is commonly accepted that undergraduate degree attainment rates must improve if postsecondary educational institutions are to meet macroeconomic demands. Involvement in co-curricular activities, such as student clubs and organizations, has been shown to increase students' satisfaction with their college

It is commonly accepted that undergraduate degree attainment rates must improve if postsecondary educational institutions are to meet macroeconomic demands. Involvement in co-curricular activities, such as student clubs and organizations, has been shown to increase students' satisfaction with their college experience and the rates by which they might persist. Yet, strategies that college administrators, faculties, and peer leaders may employ to effectively promote co-curricular engagement opportunities to students are not well developed. In turn, I created the Sky Leaders program, a retention-focused intervention designed to promote commuter student involvement in academically-purposeful activities via faculty- and peer-lead mentoring experiences. Working from an interpretivist research paradigm, this quasi-experimental mixed methods action research study was intended to measure the intervention's impact on participants' re-enrollment and reported engagement rates, as well as the effectiveness of its conceptual and logistical aspects. I used enrollment, survey, interview, observation, and focus group data collection instruments to accommodate an integrated data procurement process, which allowed for the consideration of several perspectives related to the same research questions. I analyzed all of the quantitative data captured from the enrollment and survey instruments using descriptive and inferential statistics to explore statistically and practically significant differences between participant groups. As a result, I identified one significant finding that had a perceived positive effect. Expressly, I found the difference between treatment and control participants' reported levels of engagement within co-curricular activities to be statistically and practically significant. Additionally, consistent with Glaser and Strauss' grounded theory approach, I employed open, axial, and selective coding procedures to analyze all of the qualitative data obtained via open-ended survey items, as well as interview, observation, and focus group instruments. After I reviewed and examined the qualitative data corpus, I constructed six themes reflective of the participants' programmatic experiences as well as conceptual and logistical features of the intervention. In doing so, I found that faculty, staff, and peer leaders may efficaciously serve in specific mentoring roles to promote co-curricular engagement opportunities and advance students' institutional academic and social integration, thereby effectively curbing their potential college departure decisions, which often arise out of mal-integrative experiences.

Contributors

Agent

Created

Date Created
2011

149689-Thumbnail Image.png

Synthesis and characterization of ordered mesoporous silica with controlled macroscopic morphology for membrane applications

Description

Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation,

Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation, polymer extrusion, nanowire fabrication and membrane reactors. These membranes can be fabricated as top-layers on macroporous supports or as embedded membranes in a dense matrix. The first part of the work deals with the hydrothermal synthesis and water-vapor/oxygen separation properties of supported MCM-48 and a new Al-MCM-48 type membrane for potential use in air conditioning systems. Knudsen-type permeation is observed in these membranes. The combined effect of capillary condensation and the aluminosilicate matrix resulted in the highest separation factor (142) in Al-MCM-48 membranes, with a water vapor permeance of 6×10-8mol/m2Pas. The second part focuses on synthesis of embedded mesoporous silica membranes with helically ordered pores by a novel Counter Diffusion Self-Assembly (CDSA) method. This method is an extension of the interfacial synthesis method for fiber synthesis using tetrabutylorthosilicate (TBOS) and cetyltrimethylammonium bromide (CTAB) as the silica source and surfactant respectively. The initial part of this study determined the effect of TBOS height and humidity on fiber formation. From this study, the range of TBOS heights for best microscopic and macroscopic ordering were established. Next, the CDSA method was used to successfully synthesize membranes, which were characterized to have good support plugging and an ordered pore structure. Factors that influence membrane synthesis and plug microstructure were determined. SEM studies revealed the presence of gaps between the plugs and support pores, which occur due to shrinking of the plug on drying. Development of a novel liquid deposition method to seal these defects constituted the last part of this work. Post sealing, excess silica was removed by etching with hydrofluoric acid. Membrane quality was evaluated at each step using SEM and gas permeation measurements. After surfactant removal by liquid extraction, the membranes exhibited an O2 permeance of 1.65x10-6mol/m2.Pa.s and He/O2 selectivity of 3.30. The successful synthesis of this membrane is an exciting new development in the area of ordered mesoporous membrane technology.

Contributors

Agent

Created

Date Created
2011

149864-Thumbnail Image.png

Collaboration across organizational boundaries: developing an information technology community of practice : Arizona State University

Description

Rapidly increasing demand for technology support services, and often shrinking budgetary and staff resources, create enormous challenges for information technology (IT) departments in public sector higher education. To address these difficult circumstances, the researcher developed a network of IT professionals

Rapidly increasing demand for technology support services, and often shrinking budgetary and staff resources, create enormous challenges for information technology (IT) departments in public sector higher education. To address these difficult circumstances, the researcher developed a network of IT professionals from schools in a local community college system and from a research university in the southwest into an interorganizational community of practice (CoP). This collaboration allowed members from participating institutions to share knowledge and ideas relating to shared technical problems. This study examines the extent to which the community developed, the factors that contributed to its development and the value of such an endeavor. The researcher used a mixed methods approach to gather data and insights relative to these research questions. Data were collected through online surveys, meeting notes and transcripts, post-meeting questionnaires, semi-structured interviews with key informants, and web analytics. The results from this research indicate that the group did coalesce into a CoP. The researcher identified two crucial roles that aided this development: community coordinator and technology steward. Furthermore, the IT professionals who participated and the leaders from their organizations reported that developing the community was a worthwhile venture. They also reported that while the technical collaboration component was very valuable, the non-technical topics and interactions were also very beneficial. Indicators also suggest that the community made progress toward self-sustainability and is likely to continue. There is also discussion of a third leadership role that appears important for developing CoPs that span organizational boundaries, that of the community catalyst. Implications from this study suggest that other higher education IT organizations faced with similar circumstances may be able to follow the model presented here and also achieve positive results.

Contributors

Agent

Created

Date Created
2011

149505-Thumbnail Image.png

Growth of gaN nanowires: a study using in situ transmission electron microscopy

Description

Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths.

Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to substitute single crystal semiconductor nanowires for epitaxial films. Due to their dimensionality, semiconductor nanowires typically have stress-free surfaces and better physical properties. In order to employ semiconductor nanowires as building blocks for nanoscale devices, a precise control of the nanowires' crystallinity, morphology, and chemistry is necessary. This control can be achieved by first developing a deeper understanding of the processes involved in the synthesis of nanowires, and then by determining the effects of temperature and pressure on their growth. This dissertation focuses on understanding of the growth processes involved in the formation of GaN nanowires. Nucleation and growth events were observed in situ and controlled in real-time using an environmental transmission electron microscope. These observations provide a satisfactory elucidation of the underlying growth mechanism during the formation of GaN nanowires. Nucleation of these nanowires appears to follow the vapor-liquid-solid mechanism. However, nanowire growth is found to follow both the vapor-liquid-solid and vapor-solid-solid mechanisms. Direct evidence of the effects of III/V ratio on nanowire growth is also reported, which provides important information for tailoring the synthesis of GaN nanowires. These findings suggest in situ electron microscopy is a powerful tool to understand the growth of GaN nanowires and also that these experimental approach can be extended to study other binary semiconductor compound such as GaP, GaAs, and InP, or even ternary compounds such as InGaN. However, further experimental work is required to fully elucidate the kinetic effects on the growth process. A better control of the growth parameters is also recommended.

Contributors

Agent

Created

Date Created
2010

149696-Thumbnail Image.png

Factors that influence teacher expectations of Africian American, Hispanic and low-income students

Description

There is a nationwide gap in which African American, Hispanic and low-income students perform significantly lower than their peers. Research suggests that teachers hold lower expectations for these students resulting in lower achievement. There are four main factors that influence

There is a nationwide gap in which African American, Hispanic and low-income students perform significantly lower than their peers. Research suggests that teachers hold lower expectations for these students resulting in lower achievement. There are four main factors that influence teacher expectations: stereotypes, teacher self-efficacy, school culture, language and formal policies and programs aimed at increasing teacher expectations. The purpose of this study was to inquire into the following questions: (1) What are the factors that influence teachers' academic expectations for low-income and minority students? (2) What are teacher's perceptions on the effectiveness of formal policies and programs that are aimed at increasing teacher expectations? More specifically, do teachers feel that top-down formal policies, such as teacher evaluations, uniform curriculum, and performance-based pay are effective in impacting their expectations, or do teachers believe that bottom-up policies, such as book studies and professional learning communities, make more of an impact on increasing their expectations? Ten teachers were interviewed in a school district that is consistent with the state and national achievement gap. The findings revealed that teacher expectations are influenced by the four factors I found in the research as well as two other factors: a cultural disconnect among teachers and students and teachers' level of motivation. A combination of top-down and bottom-up formal policies and programs are needed as teachers are individuals and all respond to various forms of formal policies and programs differently.

Contributors

Agent

Created

Date Created
2011

149704-Thumbnail Image.png

The impact of local wellness policies on school meals and wellness in public schools

Description

There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The

There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The percentage of obese children in the United States has more than doubled since 1970, and up to 33% of the children in the United States are currently overweight. Among the 33% of children who are overweight, 25% are obese, and 14% have type 2 diabetes, previously considered to be a condition found only in adults. This mixed-method study with a string qualitative component study examined three aspects of federally mandated local wellness polices. The study investigated the policies themselves, how the policies are understood in the local school setting, with a particular focus on the impact the policies have had on school meals. The bulk of the research data was generated through 8 in-depth interviews. The interviews were conducted with key stakeholders within 2 elementary school districts in Arizona. In addition, the evaluation of 20 local wellness polices was conducted via a rubric scoring system. The primary component found to be lacking in local wellness policies was the evaluation method. Recommendations for school districts include the establishment of a clear method of measurement.

Contributors

Agent

Created

Date Created
2011

149710-Thumbnail Image.png

Optimization of ionic conductivity in doped ceria using density functional theory and kinetic lattice Monte Carlo

Description

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.

Contributors

Agent

Created

Date Created
2011

149739-Thumbnail Image.png

Growth, characterization, and thermodynamics of III-nitride semiconductors

Description

III-nitride alloys are wide band gap semiconductors with a broad range of applications in optoelectronic devices such as light emitting diodes and laser diodes. Indium gallium nitride light emitting diodes have been successfully produced over the past decade. But the

III-nitride alloys are wide band gap semiconductors with a broad range of applications in optoelectronic devices such as light emitting diodes and laser diodes. Indium gallium nitride light emitting diodes have been successfully produced over the past decade. But the progress of green emission light emitting devices has been limited by the incorporation of indium in the alloy, mainly due to phase separation. This difficulty could be addressed by studying the growth and thermodynamics of these alloys. Knowledge of thermodynamic phase stabilities and of pressure - temperature - composition phase diagrams is important for an understanding of the boundary conditions of a variety of growth techniques. In this dissertation a study of the phase separation of indium gallium nitride is conducted using a regular solution model of the ternary alloy system. Graphs of Gibbs free energy of mixing were produced for a range of temperatures. Binodal and spinodal decomposition curves show the stable and unstable regions of the alloy in equilibrium. The growth of gallium nitride and indium gallium nitride was attempted by the reaction of molten gallium - indium alloy with ammonia at atmospheric pressure. Characterization by X-ray diffraction, photoluminescence, and secondary electron microscopy show that the samples produced by this method contain only gallium nitride in the hexagonal phase. The instability of indium nitride at the temperatures required for activation of ammonia accounts for these results. The photoluminescence spectra show a correlation between the intensity of a broad green emission, related to native defects, and indium composition used in the molten alloy. A different growth method was used to grow two columnar-structured gallium nitride films using ammonium chloride and gallium as reactants and nitrogen and ammonia as carrier gasses. Investigation by X-ray diffraction and spatially-resolved cathodoluminescence shows the film grown at higher temperature to be primarily hexagonal with small quantities of cubic crystallites, while the one grown at lower temperature to be pure hexagonal. This was also confirmed by low temperature photoluminescence measurements. The results presented here show that cubic and hexagonal crystallites can coexist, with the cubic phase having a much sharper and stronger luminescence. Controlled growth of the cubic phase GaN crystallites can be of use for high efficiency light detecting and emitting devices. The ammonolysis of a precursor was used to grow InGaN powders with different indium composition. High purity hexagonal GaN and InN were obtained. XRD spectra showed complete phase separation for samples with x < 30%, with ~ 9% indium incorporation in the 30% sample. The presence of InGaN in this sample was confirmed by PL measurements, where luminescence from both GaN and InGaN band edge are observed. The growth of higher indium compositions samples proved to be difficult, with only the presence of InN in the sample. Nonetheless, by controlling parameters like temperature and time may lead to successful growth of this III-nitride alloy by this method.

Contributors

Agent

Created

Date Created
2011