Matching Items (25)
Filtering by

Clear all filters

152195-Thumbnail Image.png
Description
Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The

Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The electronic states of these materials are very intriguing and pose problems and the possible solutions to understanding their unique behaviors. In this work, we use Electron Energy Loss Spectroscopy (EELS) – an analytical TEM tool to study both core&ndashlevel; and valence&ndashlevel; excitations in Bi2Se3 and Cu(doped)Bi2Se3 topological insulators. We use this technique to retrieve information on the valence, bonding nature, co-ordination and lattice site occupancy of the undoped and the doped systems. Using the reference materials Cu(I)Se and Cu(II)Se we try to compare and understand the nature of doping that copper assumes in the lattice. And lastly we utilize the state of the art monochromated Nion UltraSTEM 100 to study electronic/vibrational excitations at a record energy resolution from sub-nm regions in the sample.
ContributorsSubramanian, Ganesh (Author) / Spence, John (Thesis advisor) / Jiang, Nan (Committee member) / Chen, Tingyong (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
ContributorsMa, Xiaoli (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015
156109-Thumbnail Image.png
Description
Photocatalytic water splitting has been proposed as a promising way of generating carbon-neutral fuels from sunlight and water. In one approach, water decomposition is enabled by the use of functionalized nano-particulate photocatalyst composites. The atomic structures of the photocatalysts dictate their electronic and photonic structures, which are controlled by synthesis

Photocatalytic water splitting has been proposed as a promising way of generating carbon-neutral fuels from sunlight and water. In one approach, water decomposition is enabled by the use of functionalized nano-particulate photocatalyst composites. The atomic structures of the photocatalysts dictate their electronic and photonic structures, which are controlled by synthesis methods and may alter under reaction conditions. Characterizing these structures, especially the ones associated with photocatalysts’ surfaces, is essential because they determine the efficiencies of various reaction steps involved in photocatalytic water splitting. Due to its superior spatial resolution, (scanning) transmission electron microscopy (STEM/TEM), which includes various imaging and spectroscopic techniques, is a suitable tool for probing materials’ local atomic, electronic and optical structures. In this work, techniques specific for the study of photocatalysts are developed using model systems.

Nano-level structure-reactivity relationships as well as deactivation mechanisms of Ni core-NiO shell co-catalysts loaded on Ta2O5 particles are studied using an aberration-corrected TEM. It is revealed that nanometer changes in the shell thickness lead to significant changes in the H2 production. Also, deactivation of this system is found to be related to a photo-driven process resulting in the loss of the Ni core.

In addition, a special form of monochromated electron energy-loss spectroscopy (EELS), the so-called aloof beam EELS, is used to probe surface electronic states as well as light-particle interactions from model oxide nanoparticles. Surface states associated with hydrate species are analyzed using spectral simulations based on a dielectric theory and a density of states model. Geometry-induced optical-frequency resonant modes are excited using fast electrons in catalytically relevant oxides. Combing the spectral features detected in experiments with classical electrodynamics simulations, the underlying physics involved in this excitation process and the various influencing factors of the modes are investigated.

Finally, an in situ light illumination system is developed for an aberration-corrected environmental TEM to enable direct observation of atomic structural transformations of model photocatalysts while they are exposed to near reaction conditions.
ContributorsLiu, Qianlang (Author) / Crozier, Peter A. (Thesis advisor) / Chan, Candace (Committee member) / Buttry, Daniel (Committee member) / Liu, Jingyue (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2018
156155-Thumbnail Image.png
Description
This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with

This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20µm - 200µm, fine traces with varying widths of 3µm - 30µm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show “smart” control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.
ContributorsGanesan, Kousik (Author) / Tasooji, Amaneh (Thesis advisor) / Manepalli, Rahul (Committee member) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
156166-Thumbnail Image.png
Description
The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to

The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to measure the electronic band structure, which is a crucial component of interface properties.

In this dissertation, three semiconductor interfaces were studies to understand different effects on electronic states. The interfaces studied were freshly grown or pre-treated under UHV. Then in-situ PES measurements, including x-ray photoemission spectroscopy (XPS) and ultra-violet photoemission spectroscopy (UPS), were conducted to obtain electronic states information.

First, the CdTe/InSb (100) heterointerface was employed as a model interface for II-VI and III-V heterojunctions. It was suggested that an interface layer formed, which consisted of In-Te bonding. The non-octal bonding between In and Te atoms has donor-like behavior, which was proposed to result in an electron accumulation layer in InSb. A type-I heterointerface was observed. Second, Cu/ZnO interfaces were studied to understand the interface bonding and the role of polarization on ZnO interfaces. It was shown that on O-face ZnO (0001) and PEALD ZnO, copper contacts had ohmic behavior. However, on Zn-face ZnO (0001), a 0.3 eV Schottky barrier height was observed. The lower than expected barrier heights were attributed to oxygen vacancies introduced by Cu-O bonding during interface formation. In addition, it is suggested that the different barrier heights on two sides of ZnO (0001) are caused by the different behavior for the ZnO (0001) faces. Last, a pulse mode deposition method was applied for P-doped diamond growth on (100) diamond surfaces. Pretreatment effects were studied. It is suggested that an O/H plasma treatment or a short period of H-plasma and CH4/H2 plasma could yield a higher growth rate. PES measurements were conducted on H-terminated intrinsic diamond surface and P-doped/intrinsic diamond (100) interfaces. It was suggested that electronic states near the valence band maximum caused Fermi level pinning effects, independent of the diamond doping.
ContributorsWang, Xingye (Author) / Nemanich, Robert J (Thesis advisor) / Chan, Candace (Committee member) / Ponce, Fernando (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2018
156128-Thumbnail Image.png
Description
Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of

Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of reactant chemistry and reactor conditions (rotation rate, flow rates etc.). A key feature of this method was the ability to constantly supply fresh solutions throughout deposition. Solution flow due to substrate rotation ensured that reactant depleted solutions were spun off. This imparted a limited volume, near two-dimensional restriction on the growth process. Film microstructure was studied as a function of process parameters such as liquid flow rate, nebulizer configuration, platen rotation rate and solution chemistry. It was found that operating in the micro-droplet regime of deposition was a crucial factor in controlling the microstructure.

Film porosity and substrate adhesion were linked to the deposition rate, which in-turn depended on solution chemistry. Films exhibited a wide variety of hierarchically organized microstructures often spanning length scales from tens-of-nanometers to a few microns. These included anisotropic morphologies such as nanoplates and nanoblades, that were generally unexpected from magnetite (a high symmetry cubic solid). Time resolved studies showed that the reason for complex hierarchy in microstructure was the crystallization via non-classical pathways. SSD of magnetite films involved formation of precursor phases that subsequently underwent solid-state transformations and nanoparticle self-assembly. These precursor phases were identified and possible reaction mechanisms for the formation of magnetite were proposed. A qualitative description of the driving forces for self-assembly was presented.
ContributorsVadari Venkata, Kaushik Sridhar (Author) / Petuskey, William (Thesis advisor) / Carpenter, Ray (Committee member) / McCartney, Martha (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
156808-Thumbnail Image.png
Description
In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As a lightweight material of interest, Mg-xAl alloys were studied using aqueous free corrosion, atmospheric corrosion, dissolution rate kinetics, and ionic

In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As a lightweight material of interest, Mg-xAl alloys were studied using aqueous free corrosion, atmospheric corrosion, dissolution rate kinetics, and ionic liquid dissolution. Polarization and “accelerated” free corrosion studies in aqueous chloride were used to characterize the corrosion behavior and morphology of alloys. Atmospheric corrosion experiments revealed surface roughness and pH evolution behavior in aqueous environment. Dissolution in absence of water using choline-chloride:urea ionic liquid allowed for a simpler dissolution mechanism to be observed, providing additional insights regarding surface mobility of Al. These results were compared with commercial alloy (AZ31B, AM60, and AZ91D) behavior to better elucidate effects associated with secondary phases and intermetallic particles often present in Mg alloys. Aqueous free corrosion, “accelerated” free corrosion and ionic liquid dissolution studies have confirmed Al surface enrichment in a variety of morphologies, including Al-rich platelet and Al nanowire formation. This behavior is attributed to the preferential dissolution of Al as the more “noble” element in the matrix. Inductively-coupled mass spectroscopy was used to measure first-order rate reaction constants for elemental Mg and Al dissolution in aqueous chloride environment to be kMg= 9.419 x 10-6 and kAl = 2.103 x 10-6 for future implementation in kinetic Monte Carlo simulations. To better understand how “stainless-like” passivation may be achieved, Ni-xCr alloys were studied using polarization and potential pulse experiments. The passivation potential, critical current density, and passivation current density were found to decay with increasing Cr composition. The measured average number of monolayers dissolved during passivation was found to be in good agreement with percolation theory, with a fitted 3-D percolation threshold of p_c^3D=0.118 compared with the theoretical value of 0.137. Using these results, possible approaches towards achieving passivation in other systems, including Mg-Al, are discussed.
ContributorsAiello, Ashlee (Author) / Sieradzki, Karl (Thesis advisor) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2018
134663-Thumbnail Image.png
Description
Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that

Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that is cubic in structure and one that is tetragonal. One potential synthesis method that results in LLZO in the more useful, cubic phase, is electrospinning, where a mat of nanowires is spun and then calcined into LLZO. A phase containing lanthanum zirconate (LZO) and amorphous lithium occursas an intermediate during the calcination process. LZO has been shown to be a sintering aid for LLZO, allowing for lower sintering temperatures. Here it is shown the eects of internal LZO on the sintered pellets. This is done by varying the 700C calcination time to transform diering amounts of LZO and LLZO in electrospun nanowires, and then using the same sintering parameters for each sample. X-ray diraction was used to get structural and compositional analysis of both the calcined powders and sintered pellets. Pellets formed from wires calcined at 1 hour or longer contained only LLZO even if the calcined powder had only undergone the rst phase transformation. The relative density of the pellet with no initial LLZO of 61.0% was higher than that of the pellet with no LZO, which had a relative density of 57.7%. This allows for the same, or slightly higher, quality material to be synthesized with a shorter amount of processing time.
ContributorsLondon, Nathan Harry (Author) / Chan, Candace (Thesis director) / Tongay, Sefaattin (Committee member) / Department of Physics (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153840-Thumbnail Image.png
Description
In this research work, the process optimization of silver iodide-silver meta phosphate ionic glass molding for solid state super ionic stamping was performed. Solid state super ionic stamping is a process of all solid ambient condition electrochemical nano patterning technique. In solid state super ionic stamping, anodic dissolution on a

In this research work, the process optimization of silver iodide-silver meta phosphate ionic glass molding for solid state super ionic stamping was performed. Solid state super ionic stamping is a process of all solid ambient condition electrochemical nano patterning technique. In solid state super ionic stamping, anodic dissolution on a solid electrolyte –metal interface and subsequent charge-mass transport in the solid electrolyte is used for obtaining nanometer features on the metallic surface. The solid electrolyte referred to as the stamp is pre-patterned with features to be obtained on the metallic surface. This research developed the process for obtaining stamp with specific dimensions by making use of compression molding. The compression molding process was optimized by varying the five process parameters-temperature, pressure, holding time, pressing time and cooling time. The objective of the process optimization was to obtain best geometrical features for the stamp including flatness and surface roughness and by optimizing the compression molding process, stamp with minimum flatness and surface roughness was obtained. After the experimental optimization of the process was completed, statistical analysis was performed to understand the relative significance of the process parameters and the interaction of the process parameters on the flatness and surface roughness values of the molded stamp. Structural characterization was performed to obtain the variation of average domain size of ionic glass particles within the molded glass disk by varying the process parameters of holding time, pressing time and cooling time.
ContributorsPanikkar, Gautam (Author) / Hsu, Keng H (Thesis advisor) / Chan, Candace (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2015