Matching Items (447)

Filtering by

Clear all filters

131374-Thumbnail Image.png

Surface Mechanical Attrition Treatment (SMAT) of 7075 Aluminum Alloy to Induce a Protective Corrosion Resistant Layer

Description

This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness.

This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used to characterize the corrosion behavior of samples before and after SMAT. Electrochemical tests indicated an improved corrosion resistance after application of SMAT process. The observed improvements in corrosion properties are potentially due to microstructural changes in the material surface induced by SMAT which encouraged the formation of a passive oxide layer. Further testing and research are required to understand the corrosion related effects of cryogenic SMAT and initial-surface finish as the COVID-19 pandemic inhibited experimentation plans.

Contributors

Created

Date Created
2020-05

133654-Thumbnail Image.png

In situ SEM Testing for Fatigue Crack Growth: Mechanical Investigation of Titanium

Description

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V,

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.

Contributors

Agent

Created

Date Created
2018-05

132562-Thumbnail Image.png

Simulation of Atomic Structure around Defects in Anatase

Description

Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and

Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and sunscreen. Titanium dioxide exists in several polymorphic structures, of which the most common are rutile and anatase. We focused on anatase for the purposes of this research, due to its promising results for hydrolysis.

Anatase exists often in its reduced form (TiO2-x), enabling it to perform redox reactions through the absorption and release of oxygen into/from the crystal lattice. These processes result in structural changes, induced by defects in the material, which can theoretically be observed using advanced characterization methods. In situ electron microscopy is one of such methods, and can provide a window into these structural changes. However, in order to interpret the structural evolution caused by defects in materials, it is often necessary and pertinent to use atomistic simulations to compare the experimental images with models.

In this thesis project, we modeled the defect structures in anatase, around oxygen vacancies and at surfaces, using molecular dynamics, benchmarked with density functional theory. Using a “reactive” forcefield designed for the simulation of interactions between anatase and water that can model and treat bonding through the use of bond orders, different vacancy structures were analyzed and simulated. To compare these theoretical, generated models with experimental data, the “multislice approach” to TEM image simulation was used. We investigated a series of different vacancy configurations and surfaces and generated fingerprints for comparison with TEM experiments. This comparison demonstrated a proof of concept for a technique suggesting the possibility for the identification of oxygen vacancy structures directly from TEM images. This research aims to improve our atomic-level understanding of oxide materials, by providing a methodology for the analysis of vacancy formation from very subtle phenomena in TEM images.

Contributors

Agent

Created

Date Created
2019-05

133162-Thumbnail Image.png

An Analysis of SEC Clawback Provisions in terms of Loss-Aversion and Narcissism

Description

Executive compensation is broken into two parts: one fixed and one variable. The fixed component of executive compensation is the annual salary and the variable components are performance-based incentives. Clawback provisions of executive compensation are designed to require executives to

Executive compensation is broken into two parts: one fixed and one variable. The fixed component of executive compensation is the annual salary and the variable components are performance-based incentives. Clawback provisions of executive compensation are designed to require executives to return performance-based, variable compensation that was erroneously awarded in the year of a misstatement. This research shows the need for the use of a new clawback provision that combines aspects of the two currently in regulation. In our current federal regulation, there are two clawback provisions in play: Section 304 of Sarbanes-Oxley and section 954 of The Dodd\u2014Frank Wall Street Reform and Consumer Protection Act. This paper argues for the use of an optimal clawback provision that combines aspects of both the current SOX provision and the Dodd-Frank provision, by integrating the principles of loss aversion and narcissism. These two factors are important to consider when designing a clawback provision, as it is generally accepted that average individuals are loss averse and executives are becoming increasingly narcissistic. Therefore, when attempting to mitigate the risk of a leader keeping erroneously awarded executive compensation, the decision making factors of narcissism and loss aversion must be taken into account. Additionally, this paper predicts how compensation structures will shift post-implementation. Through a survey analyzing the level of both loss- aversion and narcissism in respondents, the research question justifies the principle that people are loss averse and that a subset of the population show narcissistic tendencies. Both loss aversion and narcissism drove the results to suggest there are benefits to both clawback provisions and that a new provision that combines elements of both is most beneficial in mitigating the risk of executives receiving erroneously awarded compensation. I concluded the most optimal clawback provision is mandatory for all public companies (Dodd-Frank), targets all executives (Dodd-Frank), and requires the recuperation of the entire bonus, not just that which was in excess of what should have been received (SOX).

Contributors

Agent

Created

Date Created
2018-12

133248-Thumbnail Image.png

2D or Not To Be: The Story and Science of Graphene

Description

The story of graphene truly began in what was simply a stub in the journal Physical Review not two years after the end of World War II. In 1947, McGill University physicist P.R. Wallace authored “The Band Theory of Graphite”

The story of graphene truly began in what was simply a stub in the journal Physical Review not two years after the end of World War II. In 1947, McGill University physicist P.R. Wallace authored “The Band Theory of Graphite” and attempted to develop a foundation on which the structure-property relationship of graphite could be explored; he calculates the number of free electrons and conductivity of what he describes as “a single hexagonal layer” and “suppos[es] that conduction takes place only in layers” in bulk graphite to predict wave functions, energies at specific atomic sites in the hexagonal lattice, and energy contours using a tight binding approximation for a hypothesized version of what we now call ‘armchair-style’ graphene. While Wallace was the first to explore the band structure and Brillouin Zones of single-layer graphite, the concept of two-dimensional materials was not new. In fact, for years, it was dismissed as a thermodynamic impossibility.

Everything seemed poised against any proposed physical and experimental stability of a structure like graphene. “Thermodynamically impossible”– a not uncommon shutdown to proposed novel physical or chemical concepts– was once used to describe the entire field of proposed two-dimensional crystals functioning separately from a three-dimensional base or crystalline structure. Rudolf Peierls and Lev Davoidovich Landau, both very accomplished physicists respectively known for the Manhattan Project and for developing a mathematical theory of helium superfluidity, rejected the possibility of isolated monolayer to few-layered crystal lattices. Their reasoning was that diverging thermodynamic-based crystal lattice fluctuations would render the material unstable regardless of controlled temperature. This logic is flawed, but not necessarily inaccurate– diamond, for instance, is thermodynamically metastable at room temperature and pressure in that there exists a slow (i.e. slow on the scale of millions of years) but continuous transformation to graphite. However, this logic was used to support an explanation of thermodynamic impossibility that was provided for graphene’s lack of isolation as late as 1979 by Cornell solid-state physicist Nathaniel David Mermin. These physicists’ claims had clear and consistent grounding in experimental data: as thin films become thinner, there exists a trend of a decreasing melting temperature and increasing instability that renders the films into islands at somewhere around ten to twenty atomic layers. This is driven by the thermodynamically-favorable minimization of surface energy.

Contributors

Agent

Created

Date Created
2018-05

133266-Thumbnail Image.png

Environmental Impact of Graphene's Adoption into Everyday Life

Description

Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water

Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength, flexibility, and lightweight will be instrumental in producing the next generation of athletic wear and sports equipment. Graphene's use in energy comes from its theorized ability to charge a phone battery in seconds or an electric car in minutes. Finally, for electronics, graphene will be used to create faster transistors, flexible electronics, and fully integrated wearable technology.

Contributors

Agent

Created

Date Created
2018-05

136173-Thumbnail Image.png

An Effective Characterization Methodology for Sub-micron Copper Oxides and Oxide-preventing Surface Finishes with a Short Essay on the Role of SEM in the Continuing Miniaturization of Integrated Circuits

Description

The transition to lead-free solder in the electronics industry has benefited the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the

The transition to lead-free solder in the electronics industry has benefited the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface treatment is challenging but necessary for product reliability and failure analysis. Currently, FIB-SEM, which is time-consuming and expensive, is what is used to understand and analyze the surface treatment-copper oxide(s)-copper system. This project's goals were to determine a characterization methodology that cuts both characterization time and cost in half for characterizing copper oxidation beneath a surface treatment and to determine which protective surface treatment is the best as defined by multiple criterion such as cost, sustainability, and reliability. Two protective surface treatments, organic solderability preservative (OSP) and chromium zincate, were investigated, and multiple characterization techniques were researched. Six techniques were tested, and three were deemed promising. Through our studies, it was determined that the best surface treatment was organic solderability preservative (OSP) and the ideal characterization methodology would be using FIB-SEM to calibrate a QCM model, along with using SERA to confirm the QCM model results. The methodology we propose would result in a 91% reduction in characterization cost and a 92% reduction in characterization time. Future work includes further calibration of the QCM model using more FIB/SEM data points and eventually creating a model for oxide layer thickness as a function of exposure time and processing temperature using QCM as the primary data source. An additional short essay on the role of SEM on the continuing miniaturization of integrated circuits is included at the end. This paper explores the intertwined histories of the scanning electron microscope and the integrated circuit, highlighting how advances in SEM influence integrated circuit advances.

Contributors

Agent

Created

Date Created
2015-05

136339-Thumbnail Image.png

Local Mechanical Behavior of Hastelloy-X at High Temperatures and Its Relationship to Failure

Description

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.

Contributors

Agent

Created

Date Created
2015-05

135315-Thumbnail Image.png

Quantifying Microstructural Effects on the Strain Localization During Fatigue

Description

The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability

The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched in order to visualize and characterize the microstructure and its features. The samples then undergo strain-controlled fatigue tests for several thousand cycles. Throughout testing, images of the samples are taken at zero and maximum load for DIC analysis. The DIC results can be used to study the local strains of the samples. The DIC analysis performed on the CP-Ti sample and presented in this study will be used to understand how the addition of oxygen in the Ti-O impacts fatigue response. The outcome of this research can be used to develop long-lasting, high strength materials.

Contributors

Agent

Created

Date Created
2016-05

134933-Thumbnail Image.png

The Unintended Consequences of Sarbanes-Oxley Act of 2002

Description

Given its impact on the accounting profession and public corporations, Sarbanes-Oxley Act of 2002(SOX) is a widely researched regulation among accounting scholars. Research typically focuses on the impact it has had on corporations, executives and auditors, however, there is limited

Given its impact on the accounting profession and public corporations, Sarbanes-Oxley Act of 2002(SOX) is a widely researched regulation among accounting scholars. Research typically focuses on the impact it has had on corporations, executives and auditors, however, there is limited research that illustrates the impact SOX may have on average Americans. There were several US criminal code sections that resulted from the passing of SOX. Statute 1519, which is often referred to as the "anti-shredding provision", penalizes anyone who "knowingly alters, destroys, mutilates, conceals, covers up, falsifies, or makes a false entry in any record, document, or tangible object with the intent to" obstruct a current or foreseeable federal investigation. This statute, although intended to punish behavior similar to that which occurred in the early 2000s by corporations and auditors, has been used to charge people beyond its original intent. Several issues with the crafting of the statute cause its broad application and some litigation even reached the Supreme Court due to its vague wording. Not only is the statute being applied beyond the intent, there are other issues that legal scholars have critiqued it for. This statute is far from being the only law facing these issues as the same issues and critiques are found in the 14th amendment. Rewriting the statute seems to be the most effective way to address the concerns of judges, lawyers and defendants regarding the statute. In addition, Congress could have passed this statute outside of SOX to avoid being seen as overreaching if obstruction of justice related to documents was actually an issue outside of corporate fraud.

Contributors

Agent

Created

Date Created
2016-12