Matching Items (3)
Filtering by

Clear all filters

150620-Thumbnail Image.png
Description
Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is

Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is sensitive to the lateral characteristic dimension determined by the microstructure. Specific semi-polar plane growth is suggested for reducing quantum-confined Stark effect. The macroscopic electrostatic field from the polarization discontinuity in the heterostructures is discussed, b ased on that, the band diagram of InGaN/GaN quantum well/barrier and AlGaN/GaN heterojunction is obtained from the self-consistent solution of Schrodinger and Poisson equations. New device design such as triangular quantum well with the quenched polarization field is proposed. Electron holography in the transmission electron microscopy is used to examine the electrostatic potential under polarization effects. The measured potential energy profiles of heterostructure are compared with the band simulation, and evidences of two-dimensional hole gas (2DHG) in a wurtzite AlGaN/ AlN/ GaN superlattice, as well as quasi two-dimensional electron gas (2DEG) in a zinc-blende AlGaN/GaN are found. The large polarization discontinuity of AlN/GaN is the main source of the 2DHG of wurtzite nitrides, while the impurity introduced during the growth of AlGaN layer provides the donor states that to a great extent balance the free electrons in zinc-blende nitrides. It is also found that the quasi-2DEG concentration in zinc-blende AlGaN/GaN is about one order of magnitude lower than the wurtzite AlGaN/GaN, due to the absence of polarization. Finally, the InAlN/GaN lattice-matched epitaxy, which ideally has a zero piezoelectric polarization and strong spontaneous polarization, is experimentally studied. The breakdown in compositional homogeneity is triggered by threading dislocations with a screw component propagating from the GaN underlayer, which tend to open up into V-grooves at a certain thickness of the InxAl1-xN layer. The V-grooves coalesce at 200 nm and are filled with material that exhibits a significant drop in indium content and a broad luminescence peak. The structural breakdown is due to heterogeneous nucleation and growth at the facets of the V-grooves.
ContributorsWei, Qiyuan (Author) / Ponce, Fernando A. (Thesis advisor) / Tsen, Kong-Thon (Committee member) / Shumway, John (Committee member) / Menéndez, Jose (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
149739-Thumbnail Image.png
Description
III-nitride alloys are wide band gap semiconductors with a broad range of applications in optoelectronic devices such as light emitting diodes and laser diodes. Indium gallium nitride light emitting diodes have been successfully produced over the past decade. But the progress of green emission light emitting devices has been limited

III-nitride alloys are wide band gap semiconductors with a broad range of applications in optoelectronic devices such as light emitting diodes and laser diodes. Indium gallium nitride light emitting diodes have been successfully produced over the past decade. But the progress of green emission light emitting devices has been limited by the incorporation of indium in the alloy, mainly due to phase separation. This difficulty could be addressed by studying the growth and thermodynamics of these alloys. Knowledge of thermodynamic phase stabilities and of pressure - temperature - composition phase diagrams is important for an understanding of the boundary conditions of a variety of growth techniques. In this dissertation a study of the phase separation of indium gallium nitride is conducted using a regular solution model of the ternary alloy system. Graphs of Gibbs free energy of mixing were produced for a range of temperatures. Binodal and spinodal decomposition curves show the stable and unstable regions of the alloy in equilibrium. The growth of gallium nitride and indium gallium nitride was attempted by the reaction of molten gallium - indium alloy with ammonia at atmospheric pressure. Characterization by X-ray diffraction, photoluminescence, and secondary electron microscopy show that the samples produced by this method contain only gallium nitride in the hexagonal phase. The instability of indium nitride at the temperatures required for activation of ammonia accounts for these results. The photoluminescence spectra show a correlation between the intensity of a broad green emission, related to native defects, and indium composition used in the molten alloy. A different growth method was used to grow two columnar-structured gallium nitride films using ammonium chloride and gallium as reactants and nitrogen and ammonia as carrier gasses. Investigation by X-ray diffraction and spatially-resolved cathodoluminescence shows the film grown at higher temperature to be primarily hexagonal with small quantities of cubic crystallites, while the one grown at lower temperature to be pure hexagonal. This was also confirmed by low temperature photoluminescence measurements. The results presented here show that cubic and hexagonal crystallites can coexist, with the cubic phase having a much sharper and stronger luminescence. Controlled growth of the cubic phase GaN crystallites can be of use for high efficiency light detecting and emitting devices. The ammonolysis of a precursor was used to grow InGaN powders with different indium composition. High purity hexagonal GaN and InN were obtained. XRD spectra showed complete phase separation for samples with x < 30%, with ~ 9% indium incorporation in the 30% sample. The presence of InGaN in this sample was confirmed by PL measurements, where luminescence from both GaN and InGaN band edge are observed. The growth of higher indium compositions samples proved to be difficult, with only the presence of InN in the sample. Nonetheless, by controlling parameters like temperature and time may lead to successful growth of this III-nitride alloy by this method.
ContributorsHill, Arlinda (Author) / Ponce, Fernando A. (Thesis advisor) / Chamberlin, Ralph V (Committee member) / Sankey, Otto F (Committee member) / Smith, David J. (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2011
150232-Thumbnail Image.png
Description
Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental

Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental results. In particular, the nanowires are assumed to be cylindrical, and their elastic constants isotropic. The simple analytical model is subsequently validated by performing numerical calculations using realistic nanowire geometries and cubic, anisotropic elastic constants. The comparison confirms that the analytic model is an excellent approximation that greatly facilitates quantitative Raman work, with expected errors in the strain determination that do not exceed 10%. Experimental Raman spectra of a variety of core-shell nanowires are presented, and the strain in the nanowires is assessed using the models described above. It is found that all structures present a significant degree of strain relaxation relative to ideal, fully strained Ge-Si core-shell structures. The analytical models are modified to quantify this strain relaxation.
ContributorsSingh, Rachna (Author) / Menéndez, Jose (Thesis advisor) / Drucker, Jeffery (Committee member) / Ponce, Fernando (Committee member) / Tsen, Kong-Thon (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2011