Matching Items (2)

131360-Thumbnail Image.png

Iterative Size Reduction of Bead Placement in Nanosphere Lithography

Description

Nanosphere lithography is a high throughput procedure that has important implications
for facile, low cost scaling of nanostructures. However, current benchtop experiments have
limitations based on the placement of molecular species that exhibit greater than singlemolecular binding. In addition, reliance

Nanosphere lithography is a high throughput procedure that has important implications
for facile, low cost scaling of nanostructures. However, current benchtop experiments have
limitations based on the placement of molecular species that exhibit greater than singlemolecular binding. In addition, reliance upon bottom-up self-assembly of close-packed
nanospheres makes it problematic to resolve images using low-cost light microscopes due to the
spacing limitations smaller in magnitude than light wavelength. One method that is created to
resolve this issue is iterative size reduction (ISR), where repetitive ‘iterative’ processes are
employed in order to increase the precision at which single molecules bind to a given substrate.
ISR enables inherent separation of nanospheres and therefore any subsequent single molecule
binding platforms. In addition, ISR targets and encourages single-molecule binding by
systematically reducing binding site size. Results obtained pursuing iteratively reduced
nanostructures showed that many factors are needed to be taken into consideration, including
functionalization of nanosphere particles, zeta potential, and protonation-buffer reactions.
Modalities used for observation of nanoscale patterning and single-molecule binding included
atomic force microscopy (AFM) and ONI super-resolution and fluorescence microscopy. ISR
was also used in conjunction with zero mode waveguides, which are nanoapertures enabling realtime single molecule observation at zeptoliter volumes. Although current limitations and
obstacles still exist with reproducibility and scalability of ISR, it nonetheless exhibits limitless
potential and flexibility in nanotechnology applications.

Contributors

Agent

Created

Date Created
2020-05

153449-Thumbnail Image.png

Development of nanosphere lithography technique with enhanced lithographical accuracy on periodic Si nanostructure for thin Si solar cell application

Description

In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF)

In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer over large silicon (Si) surface area, since DMF offers greatly improved wetting, capillary and convective forces in addition to slow solvent evaporation rate. Since the period and dimension of the surface pattern can be conveniently changed and controlled by introducing a desired size of SNS, and additional SNS size reduction with dry etching process, using SNS for lithography provides a highly effective nano-lithography approach for periodically arrayed nano-/micro-scale surface patterns with a desired dimension and period. Various Si nanostructures (i.e., nanopillar, nanotip, inverted pyramid, nanohole) are successfully fabricated with the SNS nano-lithography technique by using different etching technique like anisotropic alkaline solution (i.e., KOH) etching, reactive-ion etching (RIE), and metal-assisted chemical etching (MaCE).

In this research, computational optical modeling is also introduced to design the Si nanostructure, specifically nanopillars (NPs) with a desired period and dimension. The optical properties of Si NP are calculated with two different optical modeling techniques, which are the rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods. By using these two different optical modeling techniques, the optical properties of Si NPs with different periods and dimensions have been investigated to design ideal Si NP which can be potentially used for thin c-Si solar cell applications. From the results of the computational and experimental work, it was observed that low aspect ratio Si NPs fabricated in a periodic hexagonal array can provide highly enhanced light absorption for the target spectral range (600 ~ 1100nm), which is attributed to (1) the effective confinement of resonant scattering within the Si NP and (2) increased high order diffraction of transmitted light providing an extended absorption length. From the research, therefore, it is successfully demonstrated that the nano-fabrication process with SNS lithography can offer enhanced lithographical accuracy to fabricate desired Si nanostructures which can realize enhanced light absorption for thin Si solar cell.

Contributors

Agent

Created

Date Created
2015