Matching Items (6)
Filtering by

Clear all filters

132843-Thumbnail Image.png
Description
News outlets frequently portray people with disabilities as either helpless victims or objects of motivation. Portrayal of people with disabilities has improved over the years, but there is still room to grow. News outlets tend to make disability the center of the story. A story about a disabled person is

News outlets frequently portray people with disabilities as either helpless victims or objects of motivation. Portrayal of people with disabilities has improved over the years, but there is still room to grow. News outlets tend to make disability the center of the story. A story about a disabled person is primarily about their disability, with their other accomplishments framed by it.

As one example of the victimhood narrative, ABC News used to run a special called My Extreme Affliction as part of 20/20 until 2012. As the name implies, the specials covered people with disabilities, specifically extreme versions. One 2008 episode on Tourette’s syndrome described Tourette’s like it was some sort of demonic possession. The narrator talked about children who were “prisoners in their own bodies” and a family that was at risk of being “torn apart by Tourette’s.” I have Tourette’s syndrome myself, which made ABC’s special especially uncomfortable to watch. When not wringing their metaphorical hands over the “victims” of disability, many news outlets fall into the “supercrip” narrative. They refer to people as “heroes” who “overcome” their disabilities to achieve something that ranges from impressive to utterly mundane. The main emphasis is on the disability rather than the person who has it. These articles then exploit that disability to make readers feel good. As a person with a disability, I am aware that it impacts my life, but it is not the center of my life. The tics from my Tourette’s syndrome made it difficult to speak to people when I was younger, but even then they did not rule me.

Disability coverage, however, is still incredibly important for promoting acceptance and giving people with disabilities a voice. A little over a fifth of adults in the United States have a disability (CDC: 53 million adults in the US live with a disability), so poor coverage means marginalizing or even excluding a large amount of people. Journalists should try to reach their entire audience. The news helps shape public opinion with the stories it features. Therefore, it should provide visibility for people with disabilities in order to increase acceptance. This is a matter of civil rights. People with disabilities deserve fair and accurate representation.

My personal experience with ABC’s Tourette’s special leads me to believe that the media, especially the news, needs to be more responsible in their reporting. Even the name “My Extreme Affliction” paints a poor picture of what to expect. A show that focuses on sensationalist portrayals in pursuit of views further ostracizes people with disabilities. The emphasis should be on a person and not their condition. The National Center for Disability Journalism tells reporters to “Focus on the person you are interviewing, not the disability” (Tips for interviewing people with disabilities). This people-first approach is the way to improve disability coverage: Treat people with disabilities with the same respect as any other minority group.
ContributorsMackrell, Marguerite (Author) / Gilger, Kristin (Thesis director) / Doig, Steve (Committee member) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134989-Thumbnail Image.png
Description
The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to

The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to the coiled-coil and globular foot domains of subunit-γ. The F1 complex can hydrolyze ATP in vitro in a manner that drives counterclockwise (CCW) rotation, in 120° power strokes, as viewed from the positive side of the membrane. The power strokes that occur in ≈ 300 μsec are separated by catalytic dwells that occur on a msec time scale. A single-molecule rotation assay that uses the intensity of polarized light, scattered from a 75 × 35 nm gold nanorod, determined the average rotational velocity of the power stroke (ω, in degrees/ms) as a function of the rotational position of the rotor (θ, in degrees, measured in reference to the catalytic dwell). The velocity is not constant but rather accelerates and decelerates in two Phases. Phase-1 (0° - 60°) is believed to derive power from elastic energy in the protein. At concentrations of ATP that limit the rate of ATP hydrolysis, the rotor can stop for an ATP-binding dwell during Phase-1. Although the most probable position that the ATP-binding dwell occurs is 40° after the catalytic dwell, the ATP-binding dwell can occur at any rotational position during Phase-1 of the power stroke. Phase-2 of the power stroke (60° - 120°) is believed to be powered by the ATP-binding induced closure of the lever domain of a β-subunit (as it acts as a cam shaft against the γ-subunit). Algorithms were written, to sort and analyze F1-ATPase power strokes, to determine the average rotational velocity profile of power strokes as a function of the rotational position at which the ATP-binding dwell occurs (θATP-bd), and when the ATP-binding dwell is absent. Sorting individual ω(θ) curves, as a function of θATP-bd, revealed that a dependence of ω on
θATP-bd exists. The ATP-binding dwell can occur even at saturating ATP concentrations. We report that ω follows a distinct pattern in the vicinity of the ATP-binding dwell, and that the ω(θ) curve contains the same oscillations within it regardless of θATP-bd. We observed that an acceleration/deceleration dependence before and after the ATP-binding dwell, respectively, remained for increasing time intervals as the dwell occurred later in Phase-1, to a maximum of ≈ 40°. The results were interpreted in terms of a model in which the ATP-binding dwell results from internal drag at a variable position on the γε rotor.
ContributorsBukhari, Zain Aziz (Author) / Frasch, Wayne D. (Thesis director) / Allen, James P. (Committee member) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148402-Thumbnail Image.png
Description

Optometry is an important field in medicine as it allows people a chance to have their vision corrected and it serves as a health screening opportunity for those who receive a dilated eye examination. One of the largest barriers to receiving a dilated eye exam is insurance coverage. Most health

Optometry is an important field in medicine as it allows people a chance to have their vision corrected and it serves as a health screening opportunity for those who receive a dilated eye examination. One of the largest barriers to receiving a dilated eye exam is insurance coverage. Most health insurance policies have limited optometric coverage. By expanding health insurance plans to be more inclusive of optometric care, people who use these health insurance plans will have a better access of care.

ContributorsFurey, Colleen (Author) / Ruth, Alissa (Thesis director) / Mullen, Tyler (Committee member) / School of Life Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131561-Thumbnail Image.png
Description
In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which will one day be able to be implemented efficiently on

In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which will one day be able to be implemented efficiently on a quantum computer. For now we used classical computing to model one of the simplest nontrivial driven dissipative systems. This will serve as a verification of the master equation method and a baseline to test against when we are able to implement it on a quantum computer. For this report, we will mainly focus on classifying the DC component of the current around our ring. We notice several expected characteristics of this DC current including an inverse square tail at large values of the electric field and a linear response region at small values of the electric field.
ContributorsJohnson, Michael (Author) / Chamberlin, Ralph (Thesis director) / Ritchie, Barry (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05