Matching Items (4)
Filtering by

Clear all filters

152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
154301-Thumbnail Image.png
Description
The increasingly recurrent extraordinary flood events in the metropolitan area of Monterrey, Mexico have led to significant stakeholder interest in understanding the hydrologic response of the Santa Catarina watershed to extreme events. This study analyzes a flood mitigation strategy proposed by stakeholders through a participatory workshop and are assessed using

The increasingly recurrent extraordinary flood events in the metropolitan area of Monterrey, Mexico have led to significant stakeholder interest in understanding the hydrologic response of the Santa Catarina watershed to extreme events. This study analyzes a flood mitigation strategy proposed by stakeholders through a participatory workshop and are assessed using two hydrological models: The Hydrological Modeling System (HEC-HMS) and the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS).

The stakeholder-derived flood mitigation strategy consists of placing new hydraulic infrastructure in addition to the current flood controls in the basin. This is done by simulating three scenarios: (1) evaluate the impact of the current structure, (2) implementing a large dam similar to the Rompepicos dam and (3) the inclusion of three small detention dams. These mitigation strategies are assessed in the context of a major flood event caused by the landfall of Hurricane Alex in July 2010 through a consistent application of the two modeling tools. To do so, spatial information on topography, soil, land cover and meteorological forcing were assembled, quality-controlled and input into each model. Calibration was performed for each model based on streamflow observations and maximum observed reservoir levels from the National Water Commission in Mexico.

Simulation analyses focuses on the differential capability of the two models in capturing the spatial variability in rainfall, topographic conditions, soil hydraulic properties and its effect on the flood response in the presence of the different flood mitigation structures. The implementation of new hydraulic infrastructure is shown to have a positive impact on mitigating the flood peak with a more favorable reduction in the peak at the outlet from the larger dam (16.5% in tRIBS and 23% in HEC-HMS) than the collective effect from the small structures (12% in tRIBS and 10% in HEC-HMS). Furthermore, flood peak mitigation depends strongly on the number and locations of the new dam sites in relation to the spatial distribution of rainfall and flood generation. Comparison of the two modeling approaches complements the analysis of available observations for the flood event and provides a framework within which to derive a multi-model approach for stakeholder-driven solutions.
ContributorsCázares Rodríguez, Jorge E (Author) / Vivoni, Enrique (Thesis advisor) / Wang, Zhihua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2016
154333-Thumbnail Image.png
Description
Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in bioretention basins in Maricopa County, Arizona to decrease total drain time and recharge groundwater. A mixed integer nonlinear programming (MINLP)

Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in bioretention basins in Maricopa County, Arizona to decrease total drain time and recharge groundwater. A mixed integer nonlinear programming (MINLP) model has been developed for the minimum cost design of bioretention basins with dry wells.

The model developed simultaneously determines the peak stormwater inflow from watershed parameters and optimizes the size of the basin and the number and depth of dry wells based on infiltration, evapotranspiration (ET), and dry well characteristics and cost inputs. The modified rational method is used for the design storm hydrograph, and the Green-Ampt method is used for infiltration. ET rates are calculated using the Penman Monteith method or the Hargreaves-Samani method. The dry well flow rate is determined using an equation developed for reverse auger-hole flow.

The first phase of development of the model is to expand a nonlinear programming (NLP) for the optimal design of infiltration basins for use with bioretention basins. Next a single dry well is added to the NLP bioretention basin optimization model. Finally the number of dry wells in the basin is modeled as an integer variable creating a MINLP problem. The NLP models and MINLP model are solved using the General Algebraic Modeling System (GAMS). Two example applications demonstrate the efficiency and practicality of the model.
ContributorsLacy, Mason (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2016
154048-Thumbnail Image.png
Description
Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model
ContributorsKhatavkar, Puneet N (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2015