Matching Items (135)

Filtering by

Clear all filters

149728-Thumbnail Image.png

Laboratory determination of hydraulic conductivity functions for unsaturated cracked fine grained soil

Description

In geotechnical engineering, measuring the unsaturated hydraulic conductivity of fine grained soils can be time consuming and tedious. The various applications that require knowledge of the unsaturated hydraulic conductivity function are great, and in geotechnical engineering, they range from

In geotechnical engineering, measuring the unsaturated hydraulic conductivity of fine grained soils can be time consuming and tedious. The various applications that require knowledge of the unsaturated hydraulic conductivity function are great, and in geotechnical engineering, they range from modeling seepage through landfill covers to determining infiltration of water under a building slab. The unsaturated hydraulic conductivity function can be measured using various direct and indirect techniques. The instantaneous profile method has been found to be the most promising unsteady state method for measuring the unsaturated hydraulic conductivity function for fine grained soils over a wide range of suction values. The instantaneous profile method can be modified by using different techniques to measure suction and water content and also through the way water is introduced or removed from the soil profile. In this study, the instantaneous profile method was modified by creating duplicate soil samples compacted into cylindrical tubes at two different water contents. The techniques used in the duplicate method to measure the water content and matric suction included volumetric moisture probes, manual water content measurements, and filter paper tests. The experimental testing conducted in this study provided insight into determining the unsaturated hydraulic conductivity using the instantaneous profile method for a sandy clay soil and recommendations are provided for further evaluation. Overall, this study has demonstrated that the presence of cracks has no significant impact on the hydraulic behavior of soil in high suction ranges. The results of this study do not examine the behavior of cracked soil unsaturated hydraulic conductivity at low suction and at moisture contents near saturation.

Contributors

Agent

Created

Date Created
2011

149681-Thumbnail Image.png

Creep characteristics and shear strength of recycled asphalt blends

Description

The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled

The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural fill has been hindered by concern that it is susceptible to large long-term deformations (creep), preventing its use for a great many geotechnical applications. While asphalt/soil blends are often proposed as an alternative to 100% recycled asphalt fill, little data is available characterizing the geotechnical properties of recycled asphalt soil blends. In this dissertation, the geotechnical properties for five different recycled asphalt soil blends are characterized. Data includes the particle size distribution, plasticity index, creep, and shear strength for each blend. Blends with 0%, 25%, 50%, 75% and 100% recycled asphalt were tested. As the recycled asphalt material used for testing had particles sizes up to 1.5 inches, a large 18 inch diameter direct shear apparatus was used to determine the shear strength and creep characteristics of the material. The results of the testing program confirm that the creep potential of recycled asphalt is a geotechnical concern when the material is subjected to loads greater than 1500 pounds per square foot (psf). In addition, the test results demonstrate that the amount of soil blended with the recycled asphalt can greatly influence the creep and shear strength behavior of the composite material. Furthermore, there appears to be an optimal blend ratio where the composite material had better properties than either the recycled asphalt or virgin soil alone with respect to shear strength.

Contributors

Agent

Created

Date Created
2011

149502-Thumbnail Image.png

Evaluation of the effects of aging on asphalt rubber

Description

Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a

Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt pavements can potentially be of great importance in estimating the performance of a pavement before it is constructed. Of particular interest are the effects of aging on asphalt rubber pavements, due to the fact that, as a newer technology, few asphalt rubber pavement sections have been evaluated for their full service life. This study endeavors to shed some light on this topic. This study includes three experimental programs on the aging of asphalt rubber binders and mixtures. The first phase addresses aging in asphalt rubber binders and their virgin bases. The binders were subjected to various aging conditions and then tested for viscosity. The change in viscosity was analyzed and it was found that asphalt rubber binders exhibited less long term aging. The second phase looks at aging in a laboratory environment, including both a comparison of accelerated oxidative aging techniques and aging effects that occur during long term storage. Dynamic modulus was used as a tool to assess the aging of the tested materials. It was found that aging materials in a compacted state is ideal, while aging in a loose state is unrealistic. Results not only showed a clear distinction in aged versus unaged material but also showed that the effects of aging on AR mixes is highly dependant on temperature; lower temperatures induce relatively minor stiffening while higher temperatures promote much more significant aging effects. The third experimental program is a field study that builds upon a previous study of pavement test sections. Field pavement samples were taken and tested after being in service for 7 years and tested for dynamic modulus and beam fatigue. As with the laboratory aging, the dynamic modulus samples show less stiffening at low temperatures and more at higher temperatures. Beam fatigue testing showed not only stiffening but also a brittle behavior.

Contributors

Agent

Created

Date Created
2010

149708-Thumbnail Image.png

Implementation of building information modeling for wafer fab construction

Description

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.

Contributors

Agent

Created

Date Created
2011

152296-Thumbnail Image.png

The shift of precipitation maxima on the annual maximum series using regional climate model precipitation data

Description

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.

Contributors

Agent

Created

Date Created
2013

152208-Thumbnail Image.png

Estimations of reductions in household vehicle miles traveled under scenarios of shifts in vehicle type choice

Description

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.

Contributors

Agent

Created

Date Created
2013

152177-Thumbnail Image.png

Incorporation of phase change materials into cementitious systems

Description

Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building,

Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent of a buildings energy use. Increasing the efficiency of building materials will reduce energy usage over the life time of the building. Current methods for maintaining the interior environment can be highly inefficient depending on the building materials selected. Materials such as concrete have low thermal efficiency and have a low heat capacity meaning it provides little insulation. Use of phase change materials (PCM) provides the opportunity to increase environmental efficiency of buildings by using the inherent latent heat storage as well as the increased heat capacity. Incorporating PCM into concrete via lightweight aggregates (LWA) by direct addition is seen as a viable option for increasing the thermal storage capabilities of concrete, thereby increasing building energy efficiency. As PCM change phase from solid to liquid, heat is absorbed from the surroundings, decreasing the demand on the air conditioning systems on a hot day or vice versa on a cold day. Further these materials provide an additional insulating capacity above the value of plain concrete. When the temperature drops outside the PCM turns back into a solid and releases the energy stored from the day. PCM is a hydrophobic material and causes reductions in compressive strength when incorporated directly into concrete, as shown in previous studies. A proposed method for mitigating this detrimental effect, while still incorporating PCM into concrete is to encapsulate the PCM in aggregate. This technique would, in theory, allow for the use of phase change materials directly in concrete, increasing the thermal efficiency of buildings, while negating the negative effect on compressive strength of the material.

Contributors

Agent

Created

Date Created
2013

152073-Thumbnail Image.png

The impact of liquefaction on the microstructure of cohesionless soils

Description

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in the Arizona State University geotechnical laboratory. Initial centrifuge tests employed Ottawa 20-30 sand but this material proved to be too coarse to liquefy in the centrifuge. Therefore, subsequent centrifuge tests employed Ottawa F60 sand. The shake table test employed Ottawa 20-30 sand. Recovered cores were stabilized by impregnation with optical grade epoxy and sent to the University of Texas at Austin NSF-supported facility at the University of Texas at Austin for high-resolution CT scanning of geologic media. The local void ratio distribution of a CT-scanned core of Ottawa 20-30 sand evaluated using Avizo® Fire, a commercially available advanced program for image analysis, was compared to the local void ratio distribution established on the same core by analysis of optical images to demonstrate that analysis of the CT scans gave similar results to optical methods. CT scans were subsequently conducted on liquefied and not-liquefied specimens of Ottawa 20-30 sand and Ottawa F60 sand. The resolution of F60 specimens was inadequate to establish the local void ratio distribution. Results of the analysis of the Ottawa 20-30 specimens recovered from the model built for the shake table test showed that liquefaction can substantially influence the variability in local void ratio, increasing the degree of non-homogeneity in the specimen.

Contributors

Agent

Created

Date Created
2013

152088-Thumbnail Image.png

Alkali activated systems: understanding the influence of curing conditions and activator type/chemistry on the mechanical strength and chemical structure of fly ash/slag systems

Description

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.

Contributors

Agent

Created

Date Created
2013

152338-Thumbnail Image.png

Understanding the influence of cation and activator type/chemistry on the reaction kinetics and mechanical strength of liquid and powder silicate activated slag

Description

The increased emphasis on the detrimental effects of the production of construction materials such as ordinary portland cement (OPC) have driven studies of the alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts. They have been extensively

The increased emphasis on the detrimental effects of the production of construction materials such as ordinary portland cement (OPC) have driven studies of the alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts. They have been extensively studied due to the advantages they offer in terms of enhanced material properties, while increasing sustainability by the reuse of industrial waste and reducing the adverse impacts of OPC production. Ground granulated blast furnace slag is one of the commonly used materials for their content of calcium and silica species. Alkaline activators such as silicates, aluminates etc. are generally used. These materials undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification under the influence of alkaline activators. Exhaustive studies exploring the effects of sodium silicate as an activator however there is a significant lack of work on exploring the effect of the cation and the effect of liquid and powder activators. The focus of this thesis is hence segmented into two topics: (i) influence of liquid Na and K silicate activators to explore the effect of silicate and hydroxide addition and (ii) influence of powder Na and K Silicate activators to explore the effect of cation, concentration and silicates. Isothermal calorimetric studies have been performed to evaluate the early hydration process, and to understand the reaction kinetics of the liquid and powder alkali activated systems. The reaction kinetics had an impact on the early age behavior of these binders which can be explained by the compressive strength results. It was noticed that the concentration and silica modulus of the activator had a greater influence than the cation over the compressive strength. Quantification of the hydration products resultant from these systems was performed via thermo gravimetric analysis (TGA). The difference in the reaction products formed with varying cation and silicate addition in these alkali activated systems is brought out. Fourier transform infrared (FTIR) spectroscopy was used to investigate the degree of polymerization achieved in these systems. This is indicative of silica and alumina bonds in the system. Differences in the behavior of the cation are attributable to size of the hydration sphere and polarizing effect of the cation which are summarized at the end of the study.

Contributors

Agent

Created

Date Created
2013