Matching Items (13)
Filtering by

Clear all filters

152888-Thumbnail Image.png
Description
Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management

Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management effort. Research in the field of organizational behavior cautions that perhaps more than half of all organizational change efforts fail to accomplish their intended objectives. This study utilizes an action research approach to analyze change message delivery within owner organizations, model owner project team readiness and adoption of change, and identify the most frequently encountered types of resistance from lead project members. The analysis methodology included Spearman's rank order correlation, variable selection testing via three methods of hierarchical linear regression, relative weight analysis, and one-way ANOVA. Key findings from this study include recommendations for communicating the change message within owner organizations, empirical validation of critical predictors for change readiness and change adoption among project teams, and identification of the most frequently encountered resistive behaviors within change implementation in the AEC industry. A key contribution of this research is the recommendation of change management strategies for use by change practitioners.
ContributorsLines, Brian (Author) / Sullivan, Kenneth (Thesis advisor) / Wiezel, Avi (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2014
149708-Thumbnail Image.png
Description
Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.
ContributorsPindukuri, Shruthi (Author) / Chasey, Allan D (Thesis advisor) / Wiezel, Avi (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150085-Thumbnail Image.png
Description
The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.
ContributorsMaghiar, Marcel M (Author) / Wiezel, Avi (Thesis advisor) / Mitropoulos, Panagiotis (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
150955-Thumbnail Image.png
Description
Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been

Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been developed over the past twenty years by the Construction Industry Institute (CII). Specifically, it details the FEP tools developed for early project planning and the data gathered to analyze the tools used within the CII community. Data from a March 2011 survey are given showing the tools commonly used, how those tools are used and the common barriers faced that prohibit successful FEP implementation. The findings from in-depth interviews are also shared in the thesis. The interviews were used to gather detail responses from organizations on the implementation of their FEP processes. In total, out of the 116 CII organizations, 59 completed the survey and over 75 percent of the respondents used at least one CII tool in their front end planning processes. Of the 59 survey respondents, 12 organizations participated in the in-depth interviews. The thesis concludes that CII organizations continue to find value in CII FEP tools due to the increase tool usage. Also the thesis concludes that organizations must have strong management commitment, smart succession planning and a standardized planning process to increase the likelihood of successful FEP strategies.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, G.Edward (Thesis advisor) / Wiezel, Avi (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2012
151243-Thumbnail Image.png
Description
The construction industry faces important performance problems such as low productivity, poor quality of work, and work-related accidents and injuries. Creating a high reliability work system that is simultaneously highly productive and exceptionally safe has become a challenge for construction practitioners and scholars. The main goal of this dissertation was

The construction industry faces important performance problems such as low productivity, poor quality of work, and work-related accidents and injuries. Creating a high reliability work system that is simultaneously highly productive and exceptionally safe has become a challenge for construction practitioners and scholars. The main goal of this dissertation was to create an understanding of high reliability construction work systems based on lessons from the production practices of high performance work crews. High performance work crews are defined as the work crews that constantly reach and maintain a high level of productivity and exceptional safety record while delivering high quality of work. This study was conceptualized on findings from High Reliability Organizations and with a primary focus on lean construction, human factors, safety, and error management. Toward the research objective, this dissertation answered two major questions. First, it explored the task factors and project attributes that shape and increase workers' task demands and consequently affect workers' safety, production, and quality performance. Second, it explored and investigated the production practices of construction field supervisors (foremen) to understand how successful supervisors regulate task and project demands to create a highly reliable work process. Employing case study methodology, this study explored and analyzed the work practices of six work crews and crew supervisors in different trades including concrete, masonry, and hot asphalt roofing construction. The case studies included one exceptional and one average performing crew from each trade. Four major factors were considered in the selection of exceptional crew supervisors: (1) safety performance, (2) production performance, (3) quality performance, and (4) the level of project difficulty they supervised. The data collection was carried out in three phases including: (1) interview with field supervisors to understand their production practices, (2) survey and interview with workers to understand their perception and to identify the major sources of task demands, and (3) several close field observations. Each trade's specific findings including task demands, project attributes, and production practices used by crew supervisors are presented in a separate chapter. At the end the production practices that converged to create high reliability work systems are summarized and presented in nine major categories.
ContributorsMemarian, Babak (Author) / Bashford, Howard (Thesis advisor) / Boren, Rebecca (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2012
154179-Thumbnail Image.png
Description
In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance, and they are starting to become adopted in the construction

In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance, and they are starting to become adopted in the construction projects. Most of the previous research done in this area was purely qualitative, with a few quantitative studies. This study aims to quantify the performance of incentives in construction by collecting the data from more than 30 projects in United States through a questionnaire survey. First, literature review addresses the previous research work related to incentive types, incentives in construction industry, incentives in other industry and benefits of incentives. Second, the collected data is analyzed with statistical methods to test the significance of observed changes between two data sets i.e. incentive projects and non-incentive projects. Finally, the analysis results provide evidence for the significant impact of having incentives; reduced the cost and schedule growth in construction projects in United States.
ContributorsPaladugu, Bala Sai Krishna (Author) / El Asmar, Mounir (Thesis advisor) / Ernzen, James (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2015
157437-Thumbnail Image.png
Description
The success or failure of projects is not determined only by procedures, tasks, and technologies, but also by the project team and its effectiveness. In order to lead project teams towards successful outcomes, project managers must maintain high quality relationships in the workplace. When looking at employees’ relationships in the

The success or failure of projects is not determined only by procedures, tasks, and technologies, but also by the project team and its effectiveness. In order to lead project teams towards successful outcomes, project managers must maintain high quality relationships in the workplace. When looking at employees’ relationships in the workplace, Social Exchange Theory introduces two types of exchanges: employee-organization and leader-member exchanges. While both types of exchanges focus exclusively on the employee’s longitudinal relationships, the interpersonal relationships among the team members are usually overlooked.

This research presents the results of a quantitative study of the interpersonal relationships of 327 project managers and assistant project managers in their workplace. Specifically, the study investigates if the quality of the relationship with particular stakeholders, such as one’s immediate supervisor (boss), peers, or subordinates, drives the individual’s quality of the relationship with other stakeholders.

Contrary to the expectations, in strictly hierarchical organizations (one direct supervisor), there is no significant correlation between the quality of relationships with the boss and the overall quality of the individual’s relationships. However, in the case of matrix organizations (two or three bosses), there are significant correlations between several variables such as the quality of the relationship, perceived importance and the time spent with each stakeholder, as well the inclination of the participant towards leadership actions. The driving relationship in matrix organizations is the one with “the most important peer”.
ContributorsK. Jamali, M. Hossein (Author) / Wiezel, Avi (Thesis advisor) / Sullivan, Kenneth T. (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2019
156647-Thumbnail Image.png
Description
Implementing Building Information Modeling (BIM) in construction projects has many potential benefits, but issues of projects can hinder its realization in practice. Although BIM involves using the technology, more than four-fifths of the recurring issues in current BIM-based construction projects are related to the people and processes (i.e., the non-technological

Implementing Building Information Modeling (BIM) in construction projects has many potential benefits, but issues of projects can hinder its realization in practice. Although BIM involves using the technology, more than four-fifths of the recurring issues in current BIM-based construction projects are related to the people and processes (i.e., the non-technological elements of BIM). Therefore, in addition to the technological skills required for using BIM, educators should also prepare university graduates with the non-technological skills required for managing the people and processes of BIM. This research’s objective is to develop a learning module that teaches the non-technological skills for addressing common, people- and process-related, issues in BIM-based construction projects. To achieve this objective, this research outlines the steps taken to create the learning module and identify its impact on a BIM course. The contribution of this research is in the understanding of the pedagogical value of the developed problem-based learning module and documenting the learning module’s development process.
ContributorsAbdul Rahman, Abdul Rahimi Bin (Author) / Ayer, Steven K (Thesis advisor) / Tang, Pingbo (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2018
157056-Thumbnail Image.png
Description
Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success

Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success of large industrial

projects. The primary objective of this dissertation focuses on FEED maturity and accuracy

and its impact on project performance. The author was a member of the Construction

Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED

Maturity and Accuracy Total Rating System (FEED MATRS), pronounced “feed matters.”

This dissertation provides the motivation, methodology, data analysis, research findings

(which include significant correlations between the maturity and accuracy of FEED and

project performance), applicability and contributions to academia and industry. A scientific

research methodology was employed in this dissertation that included a literature review,

focus groups, an industry survey, data collection workshops, in-progress projects testing,

and statistical analysis of project performance. The results presented in this dissertation are

based on input from 128 experts in 57 organizations and a data sample of 33 completed

and 11 on-going large industrial projects representing over $13.9 billion of total installed

cost. The contributions of this work include: (1) developing a tested FEED definition for

the large industrial projects sector, (2) determining the industry’s state of practice for

measuring FEED deliverables, (3) developing an objective and scalable two-dimensional

method to measure FEED maturity and accuracy, and (4) quantifying that projects with

high FEED maturity and accuracy outperformed projects with low FEED maturity and

accuracy by 24 percent in terms of cost growth, in relation to the approved budget.
ContributorsYussef, Abdulrahman (Author) / Gibson, Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2019
154291-Thumbnail Image.png
Description
ABSTRACT

The objective of this dissertation is to identify a recommended balance between

leadership and management activities of a project manager who aims to rehabilitate a distressed construction project.

The data for this research was collected from 338 construction project professionals belonging to fifteen large construction companies who participated in leadership seminars originated

ABSTRACT

The objective of this dissertation is to identify a recommended balance between

leadership and management activities of a project manager who aims to rehabilitate a distressed construction project.

The data for this research was collected from 338 construction project professionals belonging to fifteen large construction companies who participated in leadership seminars originated by professors from Arizona State University. The seminars contained various leadership games and exercises that were designed specifically to collect data about leadership and management actions taken by the project managers.

The data from one of the games, called “Project from Hell” (PFH), was used in this research. The PFH game presents the participants with a set of fifty-two actions cards written on a deck of game cards and asks them to select the ten action cards they perceive as being most effective for turning a troubled construction project around. Each suit of the deck represents a different category of actions, focusing on either Traditional Leadership (Hearts), Best Value Leadership (Diamonds), Traditional Management (Spades), or Micro- Management (Clubs).

Statistical analysis of the results revealed that only sixteen of the fifty-two actions cards were selected with statistically significant consistency. Of these sixteen actions, six actions were form Traditional Management actions, five were Traditional Leadership actions, and five were Best Value Leadership actions. This rendered a recommended balance of 62% leadership activities vs. 38% management activities for project managers to rehabilitate distressed construction projects. It was also found that the same balance is recommended for the normal condition construction projects. The calculated weighted

i

scores for ranking the sixteen effective leadership and management actions revealed that the five Traditional Management actions are the top-most effective actions. This demonstrates the importance of stand still management actions in rehabilitating in trouble construction projects

The findings were converted into easy to implement guidelines about how project managers can change habits to increase their effectiveness by focusing on the right type of actions.

A generalization of the methodology for interpreting the results of any study based on selection of activities, was also developed.
ContributorsBehzad, Navid (Author) / Wiezel, Avi (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2016