Matching Items (8)
Filtering by

Clear all filters

133728-Thumbnail Image.png
Description
The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind,

The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind, and snow loads. The only major changes between the standards were found in the wind load calculations. The winds loads were reduced by approximately 22% for the office building in Tempe and 37% for the community center in Flagstaff. A structural design was completed for the frame of the Flagstaff community building. There was a 19% reduction in cost from the design using ASCE 7-10 provisions compared to the design utilizing ASCE 7-16 provisions, leading to a saving of $7,599.17. The reduction in loading, and subsequently more cost-effective design, is attributed to the reduction in basic wind speed for the region and consideration of the ground elevation factor. The introduction of the new ASCE 7-16 standard was met with criticism, especially over the increase in specific coefficients in the wind load and seismic load chapters. Proponents of ASCE 7-16 boast that the new chapter on tsunami loads, new maps for various environmental loads, and a new electronic hazard are some of the merits of the newest standard. Others still question whether the complexity of the provisions is necessary and call for further improvements for the wind and seismic provisions. While tension exists in the desire for a simple standard, ASCE 7-16 prioritizes in having its provisions provide economical and reliable results. More consideration could be devoted to developing a more convenient standard for users. Regardless, engineering professionals should be able to adapt alongside newly developed practices and newly discovered data.
ContributorsCajegas, Cyam Joshua Dato (Author) / Rajan, Subramaniam (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168290-Thumbnail Image.png
Description
Glasses have many applications such as containers, substrates of displays, high strength fibers and portable electronic display panels. Their excellent mechanical properties such as high hardness, good forming ability and scratch resistance make glasses ideal for these applications. Many factors affect the selection of one glass over another for a

Glasses have many applications such as containers, substrates of displays, high strength fibers and portable electronic display panels. Their excellent mechanical properties such as high hardness, good forming ability and scratch resistance make glasses ideal for these applications. Many factors affect the selection of one glass over another for a given purpose such as cost, ingredients, scalability of manufacturing, etc. Typically, silicate based glasses are often selected because they satisfy most of the selection criteria. However, with the recent abundant use of these glasses in touch-based applications, understanding their abilities to dissipate energy due to surface contact loads has become increasingly desirable. The most common silicate glasses worldwide are glassy silica and soda lime. Calcium aluminosilicates are also gaining popularity due to their importance as substrates for display screens in electronic devices. The surface energy dissipation and strength of these glasses are based on several factors, but predominantly rely on ingredient composition and the so-called Indentation Size Effect (ISE), where the strength depends on the maximum surface force. Both the composition and ISE alter the strength and favored energy dissipation mechanisms of the glass. Unlocking the contribution of these mechanisms and elucidating their dependence on composition and force is the underlining goal of this thesis.Prior to cracking, silicate glasses can inelastically deform by shear and densification. However, the link between the mechanical properties, strength, glass structure and maximum force and the propensity by which either of these mechanisms are favored still remains unclear. In this study, the first aim is to elucidate the causes of the ISE and i explore the relationships between the ISE and the dissipation mechanisms, and identify what feature(s) of the glass can be used to infer their behavior. All glasses have shown a strong link between the ISE and shear flow and densification. Second, the link between composition and the dissipation mechanisms will be elucidated. This is accomplished by performing indentation tests coupled with an annealing method to independently quantify the amount of volume associated with each dissipation mechanism and elucidate relationships with ingredients and structure of the glasses. Some conclusions will then be presented that link all these behaviors together.
ContributorsKazembeyki, Maryam (Author) / Hoover, Christian G (Thesis advisor) / Rajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Chawla, Nikhilesh (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2021
187867-Thumbnail Image.png
Description
Concrete develops strength rapidly after mixing and is highly influenced by temperature and curing process. The material characteristics and the rate of property development, along with the exposure conditions influences volume change mechanisms in concrete, and the cracking propensity of the mixtures. Furthermore, the structure geometry (due to restraint as

Concrete develops strength rapidly after mixing and is highly influenced by temperature and curing process. The material characteristics and the rate of property development, along with the exposure conditions influences volume change mechanisms in concrete, and the cracking propensity of the mixtures. Furthermore, the structure geometry (due to restraint as well as the surface area-to-volume ratio) also influences shrinkage and cracking. Thus, goal of this research is to better understand and predict shrinkage cracking in concrete slab systems under different curing conditions. In this research, different concrete mixtures are evaluated on their propensity to shrink based on free shrinkage and restrained shrinkage tests.Furthermore, from the data obtained from restrained ring test, a casted slab is measured for shrinkage. Effects of different orientation of restraints are studied and compared to better understand the shrinking behavior of the concrete mixtures. The results show that the maximum shrinkage is near the edges of the slab and decreases towards the center. Shrinkage near the edges with no restraint is found out to be more than the shrinkage towards the edges with restraining effects.
ContributorsNimbalkar, Atharwa Samir (Author) / Neithalath, Narayanan (Thesis advisor) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam (Committee member) / Arizona State University (Publisher)
Created2023
161460-Thumbnail Image.png
Description
There is a high demand for customized designs of various types of cement-based materials in order to address specific purposes in the construction field. These demands stem from the need to optimize the cementitious matrix properties and reinforcement choices, especially in high reliability, durability, and performance applications that include infrastructure,

There is a high demand for customized designs of various types of cement-based materials in order to address specific purposes in the construction field. These demands stem from the need to optimize the cementitious matrix properties and reinforcement choices, especially in high reliability, durability, and performance applications that include infrastructure, energy production, commercial buildings, and may ultimately be extended to low risk/high volume applications such as residential applications. The typical tools required to guide practicing engineers should be based on optimization algorithms that require highly efficient capacity and design alternatives and optimal computational tools. The general case of flexural design of members is an important aspect of design of structural members which can be extended to a variety of applications that include various cross-sections such as rectangular, W-sections, channels, angles, and T sections. The model utilized the simplified linear constitutive response of cement-based composite in compression and tension and extends into a two-segment elastic-plastic, strain softening, hardening, tension-stiffening, and a multi-segment system. The generalized parametric model proposed uses a dimensionless system in the stress-strain materials diagram to formulate piecewise equations for an equilibrium of internal stresses and obtains strain distributions for the closed-form solution of neutral axis location. This would allow for the computation of piecewise moment-curvature response. The number of linear residual stress implemented is flexible to a user to maintain a robust response. In the present approach bilinear, trilinear, and quad-linear models are addressed and a procedure for incorporating additional segments is presented. Moreover, a closed-form solution of moment-curvature can be solved and employed in calculating load-deflection response. The model is adaptable for various types of fiber-reinforced and textile reinforced concrete (FRC, TRC, UHPC, AAC, and Reinforced Concrete). The extensions to cover continuous fiber reinforcement such as textile reinforced concrete (TRC, FRCM) strengthening and repair are addressed. The theoretical model is extended to incorporate the hybrid design (HRC) with continuous rebar with FRC to increase the ductility and ultimate moment capacity. HRC extends the performance of the fiber system to incorporate residual capacity into a serviceability-based design that reduced the reliance on the design based on the limit state. The design chart for HRC and as well as conventional RC has been generated for practicing engineering applications. Results are compared to a large array of data from experimental results conducted at the ASU structural lab facilities and other published literature.
Contributorspleesudjai, chidchanok (Author) / Mobasher, Barzin (Thesis advisor) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam (Committee member) / Arizona State University (Publisher)
Created2021
Description
Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids

Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids in the fresh state, towards establishing material-process relationships to enhance print quality. This study introduces 3D printable binders developed based on rotational and capillary rheology test parameters, and establish the direct influence of packing coefficients, geometric ratio, slip velocities, and critical print velocities on the extrudate quality. The ratio of packing fraction to the square of average particle diameter (0.01-0.02), and equivalent microstructural index (5-20) were suitable for printing, and were directly related to the cohesion and extrusional yield stress of the material. In fact, steady state pressure for printing (30-40 kPa) is proportional to the extrusional yield stress, and increases with the geometric ratio (0-60) and print velocity (5-50 mm/s). Higher print velocities results in higher wall shear stresses and was exponentially related to the slip layer thickness (estimated between 1-5μ), while the addition of superplasticizers improve the slip layer thickness and the extrudate flow. However, the steady state pressure and printer capacity limits the maximum print velocity while the deadzone length limits the minimum velocity allowable (critical velocity regime) for printing. The evolution of buildability with time for the fresh state mortars was characterized with digital image correlation using compressive strain and strain rate in printed layers. The fresh state characteristics (interlayer and interfilamentous) and process parameters (layer height and fiber dimensions) influence the hardened mechanical properties. A lower layer height generally improves the mechanical properties and slight addition of fiber (up to 0.3% by volume) results in a 15-30% increase in the mechanical properties. 3D scanning and point-cloud analysis was also used to assess the geometric tolerance of a print based on mean error distances, print accuracy index, and layer-wise percent overlap. The research output will contribute to a synergistic material-process design and development of test methods for printability in the context of 3D printing of concrete.
ContributorsAmbadi Omanakuttan Nair, Sooraj Kumar (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2021
161992-Thumbnail Image.png
Description
Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial

Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial and multiaxial states of loading including damage and failure predictions. Obtaining this information from (laboratory) experimental testing is costly, time consuming, and sometimes, impractical. On the other hand, numerical modeling of composite materials provides a tool (virtual testing) that can be used as a supplemental and an alternate procedure to obtain data that either cannot be readily obtained via experiments or is not possible with the currently available experimental setup. In this study, a unidirectional composite (Toray T800-F3900) is modeled at the constituent level using repeated unit cells (RUC) so as to obtain homogenized response all the way from the unloaded state up until failure (defined as complete loss of load carrying capacity). The RUC-based model is first calibrated and validated against the principal material direction laboratory tests involving unidirectional loading states. Subsequently, the models are subjected to multi-directional states of loading to generate a point cloud failure data under in-plane and out-of-plane biaxial loading conditions. Failure surfaces thus generated are plotted and compared against analytical failure theories. Results indicate that the developed process and framework can be used to generate a reliable failure prediction procedure that can possibly be used for a variety of composite systems.
ContributorsKatusele, Daniel Mutahwa (Author) / Rajan, Subramaniam (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2021
187384-Thumbnail Image.png
Description
Alkali activated mine tailing-slag blends and mine tailing-cement blends containing mine tailings as the major binder constituent are evaluated for their setting time behavior, reactivity properties, flow characteristics, and compressive strengths. Liquid sodium silicate and sodium hydroxide are used as the activator solution. The effects of varying alkali oxide-to-powder ratio

Alkali activated mine tailing-slag blends and mine tailing-cement blends containing mine tailings as the major binder constituent are evaluated for their setting time behavior, reactivity properties, flow characteristics, and compressive strengths. Liquid sodium silicate and sodium hydroxide are used as the activator solution. The effects of varying alkali oxide-to-powder ratio (n value) and silicon oxide-to-alkali oxide ratio (Ms value) is explored. The reactivity of all blends prepared in this study is studied using an isothermal calorimeter. Mine tailing-cement blends show a higher initial heat release peak than mine tailing-slag blends, whereas their cumulative heat release is comparable for higher n values of 0.050 to 0.100. Compressive strength tests and rheological studies were done for the refined blends selected based on setting time criterion. Setting times and compressive strengths are found to depend significantly on the activator parameters and binder compositions, allowing fine-tuning of the mix proportion parameters based on the intended end applications. The compressive strength of the selected mine tailing-slag blends and mine tailing-cement blends are in the range of 7-40 MPa and 4-11 MPa, respectively. Higher compressive strength is generally achieved at lower Ms and higher n values for mine tailing-slag blends, while a higher Ms yields better compressive strength in the case of mine tailing-cement blends. Rheological studies indicate a decrease in yield stress and viscosity with increase in the replacement ratio, while a higher activator concentration increase both. Oscillatory shear studies were used to evaluate the storage modulus and loss modulus of the mine tailing binders. The paste is seen to exhibit a more elastic behavior at n values of 0.05 and 0.075, however the viscous behavior is seen to dominate at higher n value of 0.1 at similar replacement ratios and Ms value. A higher Ms value is also seen to increase the onset point of the drop in both the storage and loss modulus of the pastes. The studied also investigated the potential use of mine tailing blends for coating applications. The pastes with higher alkalinity showed a lesser crack percentage, with a 10% slag replacement ratio having a better performance compared to 20% and 30% slag replacement ratios. Overall, the study showed that the activation parameters and mine tailings replacement level have a significant influence on the properties of both mine tailing-slag binders and mine tailing-cement binders, thereby allowing selection of suitable mix design for the desired end application, allowing a sustainable approach to dispose the mine tailings waste
ContributorsRamasamy Jeyaprakash, Rijul Kanth (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2023
187725-Thumbnail Image.png
Description
Composites are replacing conventional materials in aerospace applications due to their light weight, non-corrosiveness, and high specific strength. This thesis aims to characterize the input data for IM7-8552 unidirectional composite to support MAT213, an orthotropic elasto-plastic damage material model and MAT_186, a mixed mode cohesive zone model used to model

Composites are replacing conventional materials in aerospace applications due to their light weight, non-corrosiveness, and high specific strength. This thesis aims to characterize the input data for IM7-8552 unidirectional composite to support MAT213, an orthotropic elasto-plastic damage material model and MAT_186, a mixed mode cohesive zone model used to model delamination. MAT_213 in conjunction with MAT_186 can be used to predict the behavior of composite under crush and impact loads including delamination. MAT_213 requires twelve sets of stress-strain curves, direction-dependent material constants, and flow rule coefficients as input. All the necessary inputs are obtained through the post-processing of a total of twelve distinct quasi-static and room temperature (QS-RT) experiments. MAT_186 is driven by a set of Mode I and Mode II fracture parameters and traction separation laws, a constitutive law that derives the relationship between stresses and relative displacements at integration points of cohesive elements. Obtaining cohesive law parameters experimentally is a tedious process as it requires close monitoring of the crack length during the test, which is a difficult task to achieve with accuracy even after using sophisticated equipment such as Digital Image Correlation (DIC). In this thesis, a numerical inverse analysis method to precisely predict these parameters by using finite element analysis with cohesive zone modeling and response surface methodology (RSM) is proposed. Three steps comprise RSM. The process in Step 1 involves calculating the root mean square error between the finite element and experimental load-displacement curves to produce the response surface. In step 2, the response surface is fitted with a second-order polynomial using the Levenberg-Marquardt algorithm. In step 3, an optimization problem is solved by minimizing the fitted function to find the optimum cohesive zone parameters. Finally, the obtained input for MAT_213 and MAT_186 material models is validated by performing a quasi-isotropic tension test simulation.
ContributorsRaihan, Mohammed (Author) / Rajan, Subramaniam (Thesis advisor) / Neithalath, Narayanan (Committee member) / Hoover, Christian (Committee member) / Yellavajjala, Ravi (Committee member) / Arizona State University (Publisher)
Created2023