Matching Items (17)
Filtering by

Clear all filters

131519-Thumbnail Image.png
Description
As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that there were consistent points of confusion amongst the students that the teaching staff could not efficiently communicate with the electronic or physical classroom materials available. As a physical learner, I am able to learn more comprehensively if I have a physical model to manipulate, and often found myself in the position of wanting to be able to physically represent and manipulate the systems being studied in class.
ContributorsCamillucci, Allyson Nicole (Co-author, Co-author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135448-Thumbnail Image.png
Description
Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to continuously improve the performance of the material. Fiber reinforcement is a significant technique in strengthening precast concrete, but manufacturing limitations

Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to continuously improve the performance of the material. Fiber reinforcement is a significant technique in strengthening precast concrete, but manufacturing limitations are common which has led to reliance on steel reinforcement. Two-dimensional textile reinforcement has emerged as a strong and efficient alternative to both fiber and steel reinforced concrete with pultrusion manufacturing shown as one of the most effective methods of precasting concrete. The intention of this thesis project is to detail the components, functions, and outcomes shown in the development of an automated pultrusion system for manufacturing textile reinforced concrete (TRC). Using a preexisting, manual pultrusion system and current-day manufacturing techniques as a basis, the automated pultrusion system was designed as a series of five stations that centered on textile impregnation, system driving, and final pressing. The system was then constructed in the Arizona State University Structures Lab over the course of the spring and summer of 2015. After fabricating each station, a computer VI was coded in LabVIEW software to automatically drive the system. Upon completing construction of the system, plate and angled structural sections were then manufactured to verify the adequacy of the technique. Pultruded TRC plates were tested in tension and flexure while full-scale structural sections were tested in tension and compression. Ultimately, the automated pultrusion system was successful in establishing an efficient and consistent manufacturing process for continuous TRC sections.
ContributorsBauchmoyer, Jacob Macgregor (Author) / Mobasher, Barzin (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136011-Thumbnail Image.png
Description
Sickle cell disease is a genetic disorder that can cause substantial helath problems. It is the result of a mutation in the DNA coding for hemoglobin. As a result of changes in two important amino acids, a person suffering from sickle cell disease will have erythrocytes that do not maintain

Sickle cell disease is a genetic disorder that can cause substantial helath problems. It is the result of a mutation in the DNA coding for hemoglobin. As a result of changes in two important amino acids, a person suffering from sickle cell disease will have erythrocytes that do not maintain the typical biconcave shape and instead for a crescent shape. Individuals with sickle cell disease may have many health problems tied to their irregular hemoglobin. The unusual shape of the erythrocytes leads to a much shorter cell life, which means that even though bone marrow remains active long past childhood to try to keep up with the loss of erythrocytes, the body is still unable to accommodate the rapid death of erythrocytes. The malformed erythrocytes can also cause vascular occlusion, blocking blood vessels and slowing blood flow. While sickle cell disease has the potential to spread worldwide, it is particularly common in Africa. This may be because people with the sickle cell trait have a high resistance to malaria, making them more likely to survive that ubiquitous disease and pass on their traits to their offspring. However, the mortality rate in young children with sickle cell disease is very high, in part because the spleen, already stressed by filtering out dead erythrocytes, has difficulties filtering out bacteria. One of the keys to stopping the spread of the disease is neonatal screening, but this requires specialized equipment that is fairly uncommon in rural areas, as can be seen in Kenya. Therefore, it would be highly beneficial to develop a more cost-effective and widely available method for testing for sickle cell disease.
ContributorsWold, John (Author) / Caplan, Michael (Thesis director) / LaBelle, Jeffrey (Committee member) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
133958-Thumbnail Image.png
Description
The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years

The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years later, on the exact anniversary of the devastating earthquake, Mexico City was once again jolted by a 7.1 magnitude earthquake. Although still significant, the 2017 earthquake collapsed only about a tenth of the buildings collapsed by the 1985 Earthquake, and in turn resulted in a lower death toll. Even though these earthquakes struck in the same seismic region, their effects were vastly different. This thesis completes a comparison between the two earthquakes focusing on the structural impacts including background on Mexico City's unique geology, basic concepts necessary to understand the response of structures to earthquake excitation, and structural failure modes observed in both earthquakes. The thesis will also discuss the earthquake's fundamental differences that led to the discrepancy in structural damage and ultimately in lower death tolls. Of those discussed, is the types of buildings that were targeted and collapsed. In 1985, buildings with 6 or more floors had the highest damage category. Resonance frequencies of these buildings were similar to the resonance frequencies of the subsoil, leading to amplified oscillations, and ultimately in failure. The 2017 earthquake did not have as much distance from the epicenter for the high frequency seismic waves to be absorbed. In contrast, the shorter, faster waves that reached the capital affected smaller buildings, and spared most tall buildings.
ContributorsGonzalez, Diana Laura (Author) / Hjelmstad, Keith (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133728-Thumbnail Image.png
Description
The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind,

The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind, and snow loads. The only major changes between the standards were found in the wind load calculations. The winds loads were reduced by approximately 22% for the office building in Tempe and 37% for the community center in Flagstaff. A structural design was completed for the frame of the Flagstaff community building. There was a 19% reduction in cost from the design using ASCE 7-10 provisions compared to the design utilizing ASCE 7-16 provisions, leading to a saving of $7,599.17. The reduction in loading, and subsequently more cost-effective design, is attributed to the reduction in basic wind speed for the region and consideration of the ground elevation factor. The introduction of the new ASCE 7-16 standard was met with criticism, especially over the increase in specific coefficients in the wind load and seismic load chapters. Proponents of ASCE 7-16 boast that the new chapter on tsunami loads, new maps for various environmental loads, and a new electronic hazard are some of the merits of the newest standard. Others still question whether the complexity of the provisions is necessary and call for further improvements for the wind and seismic provisions. While tension exists in the desire for a simple standard, ASCE 7-16 prioritizes in having its provisions provide economical and reliable results. More consideration could be devoted to developing a more convenient standard for users. Regardless, engineering professionals should be able to adapt alongside newly developed practices and newly discovered data.
ContributorsCajegas, Cyam Joshua Dato (Author) / Rajan, Subramaniam (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137293-Thumbnail Image.png
Description
It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials

It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials for this study. Sodium sulfate and calcium oxide were used as activators. In Part 1 of this study, focus was placed on high volume replacement of OPC using sodium sulfate as the activator. Despite improvements in heat generation for both CFA and FFA systems in the presence of sulfate, sodium sulfate was found to have adverse effects on the compressive strength of CFA mortars. In the CFA mixes, strength improved significantly with sulfate addition, but began to decrease in strength around 14 days due to expansive ettringite formation. Conversely, the addition of sulfate led to improved strength for FFA mixes such that the 28 day strength was comparable to that of the CFA mixes with no observable strength loss. Maximum compressive strengths achieved for the high volume replacement mixes was around 40 MPa, which is considerably lower than the baseline OPC mix used for comparison. In Part 2 of the study, temperature dependency and calcium oxide addition were studied for sodium sulfate activated systems composed of 100% Class F fly ash. In the presence of sulfate, added calcium increased reactivity and compressive strength at early ages, particularly at elevated temperatures. It is believed that sulfate and calcium react with alumina from fly ash to form ettringite, while heat overcomes the activation energy barrier of fly ash. The greatest strengths were obtained for mixes containing the maximum allowed quantity of calcium oxide (5%) and sodium sulfate (3%), and were around 12 MPa. This is a very low compressive strength relative to OPC and would therefore be an inadequate substitute for OPC needs.
Created2014-05
137039-Thumbnail Image.png
Description
Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address

Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address the lack of knowledge with supplemental educational materials to be partnered with an engineering capstone project that provides a low cost diagnostic test.
ContributorsShawver, Jamie Christine (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134402-Thumbnail Image.png
Description
The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer available to them. My creative project is to design and build a shake table for FSE 100 use. This paper will go through the steps I took to design and construct my shake table as well as suggestions to anyone else who would want to build a shake table. The design of the shake table that was constructed was modeled after Quanser's Shake Table II. The pieces from the shake table were purchased from McMaster-Carr and was assembled at the TechShop in Chandler, Arizona. An educational component was added to this project to go along with the shake table. The project will be for the use of a FSE 100 classes. This project is very similar to the American Society of Civil Engineers, Pacific Southwest Conference's seismic competition. The main difference is that FSE 100 students will not be making a thirty story model but only a five story model. This shake table will make Arizona State University's engineering program competitive with other top universities that use and implement shake table analysis in their civil engineering courses.
ContributorsLockhart, Laura E. (Author) / Ward, Kristen (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134138-Thumbnail Image.png
Description
This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the

This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the purpose of completing their undergraduate honors thesis. The early sections of this document comprise a general, introductory overview of earthquakes and liquefaction as a phenomenon resulting from earthquakes. In the latter sections, this document analyzes the relationship between the furthest hypocentral distance to observed liquefaction and the earthquake magnitude published in 2006 by Wang, Wong, Dreger, and Manga. This research was conducted to gain a greater understanding of the factors influencing liquefaction and to compare the existing relationship between the maximum distance for liquefaction and earthquake magnitude to updated earthquake data compiled for the purpose of this report. As part of this research, 38 different earthquake events from the Geotechnical Extreme Events Reconnaissance (GEER) Association with liquefaction data were examined. Information regarding earthquake depth, distance to the furthest liquefaction event (epicentral and hypocentral), and earthquake magnitude (Mw) from recent earthquake events (1989 to 2016) was compared to the previously established relationship of liquefaction occurrence distance to moment magnitude. The purpose of this comparison was to determine if recent events still comply with the established relationship. From this comparison, it was determined that the established relationship still generally holds true for the large magnitude earthquakes (magnitude 7.5 or above) that were considered herein (with only 2.6% falling above the furthest expected liquefaction distance). However, this relationship may be too conservative for recent, low magnitude earthquake events; those events examined below magnitude 6.3 did not approach established range of furthest expected liquefaction distance. The overestimation of furthest hypocentral distance to liquefaction at low magnitudes suggest the empirical relationship may need to be adjusted to more accurately capture recent events, as reported by GEER.
ContributorsMonroe, Hayley (Co-author) / Maynard, Tyler (Co-author) / Kavazanjian, Edward (Thesis director) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Construction Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12