Matching Items (2)
Filtering by

Clear all filters

149708-Thumbnail Image.png
Description
Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.
ContributorsPindukuri, Shruthi (Author) / Chasey, Allan D (Thesis advisor) / Wiezel, Avi (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2011
155876-Thumbnail Image.png
Description
Many accidents occur during construction and maintenance of facilities. Both research and practice have demonstrated that decisions made during the design and planning phases before work at a construction site can influence workers’ safety. The Prevention through Design (PtD) concept is the consideration of construction site safety in the design

Many accidents occur during construction and maintenance of facilities. Both research and practice have demonstrated that decisions made during the design and planning phases before work at a construction site can influence workers’ safety. The Prevention through Design (PtD) concept is the consideration of construction site safety in the design of a project. In one research study, more than 200 fatality investigation reports were reviewed, and the results showed that 42 percent of fatalities reviewed were linked to the absence of the PtD concept (Behm, 2005). This work indicates that the associated risk that contributed to the incident would have been reduced or eliminated if PtD had been utilized.

Researchers have identified the reasons for not applying the PtD concept. The predominant reason is that most architects and design engineers do not learn about construction safety and construction processes required to eliminate construction safety hazards through design. Therefore, Prevention through Design education of architects, design engineers, and construction managers is vital. However, in most curricula, there is no room for an entire course focused on PtD. Therefore, one researcher implemented 70 minutes long lecture-based intervention in a project management class of the civil engineering discipline, but it did not prove effective (Behm, Culvenor, & Dixon, 2014).

Hence, there is an opportunity to teach PtD to students using alternative teaching strategies such as computer games. Computer games are routinely considered as the most important and influential medium by college students. In this research study, a serious game and a paper-based game (paper version of the serious game) were developed and implemented. The aim of the study was to measure the effectiveness of alternative teaching methods to train students for safe design thinking. The result shows that the computer game engaged the students in comprehensive hazard recognition challenges. The learning experience of the students was compared to two other interventions: paper-based game and lecture-based teaching. The in-class lecture and the computer game were effective in delivering the prevention through design topics. The game was more effective compared to the lecture. The paper-based game failed to motivate students to learn. This dissertation discusses the possible reasons for success and failures of these pedagogical approaches.
ContributorsZia-ud-Din (Author) / Gibson, Jr, G. Edward (Thesis advisor) / Chasey, Allan D (Committee member) / Torrent, David Grau (Committee member) / Arizona State University (Publisher)
Created2017