Matching Items (253)

134402-Thumbnail Image.png

Development of a Mechanical Seismic Simulation Apparatus for College Engineering Education

Description

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer available to them. My creative project is to design and build a shake table for FSE 100 use. This paper will go through the steps I took to design and construct my shake table as well as suggestions to anyone else who would want to build a shake table. The design of the shake table that was constructed was modeled after Quanser's Shake Table II. The pieces from the shake table were purchased from McMaster-Carr and was assembled at the TechShop in Chandler, Arizona. An educational component was added to this project to go along with the shake table. The project will be for the use of a FSE 100 classes. This project is very similar to the American Society of Civil Engineers, Pacific Southwest Conference's seismic competition. The main difference is that FSE 100 students will not be making a thirty story model but only a five story model. This shake table will make Arizona State University's engineering program competitive with other top universities that use and implement shake table analysis in their civil engineering courses.

Contributors

Agent

Created

Date Created
  • 2017-05

134138-Thumbnail Image.png

Earthquake-Induced Soil Liquefaction

Description

This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both

This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the purpose of completing their undergraduate honors thesis. The early sections of this document comprise a general, introductory overview of earthquakes and liquefaction as a phenomenon resulting from earthquakes. In the latter sections, this document analyzes the relationship between the furthest hypocentral distance to observed liquefaction and the earthquake magnitude published in 2006 by Wang, Wong, Dreger, and Manga. This research was conducted to gain a greater understanding of the factors influencing liquefaction and to compare the existing relationship between the maximum distance for liquefaction and earthquake magnitude to updated earthquake data compiled for the purpose of this report. As part of this research, 38 different earthquake events from the Geotechnical Extreme Events Reconnaissance (GEER) Association with liquefaction data were examined. Information regarding earthquake depth, distance to the furthest liquefaction event (epicentral and hypocentral), and earthquake magnitude (Mw) from recent earthquake events (1989 to 2016) was compared to the previously established relationship of liquefaction occurrence distance to moment magnitude. The purpose of this comparison was to determine if recent events still comply with the established relationship. From this comparison, it was determined that the established relationship still generally holds true for the large magnitude earthquakes (magnitude 7.5 or above) that were considered herein (with only 2.6% falling above the furthest expected liquefaction distance). However, this relationship may be too conservative for recent, low magnitude earthquake events; those events examined below magnitude 6.3 did not approach established range of furthest expected liquefaction distance. The overestimation of furthest hypocentral distance to liquefaction at low magnitudes suggest the empirical relationship may need to be adjusted to more accurately capture recent events, as reported by GEER.

Contributors

Agent

Created

Date Created
  • 2017-12

133958-Thumbnail Image.png

Mexico City: Earthquake Dynamics of Structures

Description

The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake

The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years later, on the exact anniversary of the devastating earthquake, Mexico City was once again jolted by a 7.1 magnitude earthquake. Although still significant, the 2017 earthquake collapsed only about a tenth of the buildings collapsed by the 1985 Earthquake, and in turn resulted in a lower death toll. Even though these earthquakes struck in the same seismic region, their effects were vastly different. This thesis completes a comparison between the two earthquakes focusing on the structural impacts including background on Mexico City's unique geology, basic concepts necessary to understand the response of structures to earthquake excitation, and structural failure modes observed in both earthquakes. The thesis will also discuss the earthquake's fundamental differences that led to the discrepancy in structural damage and ultimately in lower death tolls. Of those discussed, is the types of buildings that were targeted and collapsed. In 1985, buildings with 6 or more floors had the highest damage category. Resonance frequencies of these buildings were similar to the resonance frequencies of the subsoil, leading to amplified oscillations, and ultimately in failure. The 2017 earthquake did not have as much distance from the epicenter for the high frequency seismic waves to be absorbed. In contrast, the shorter, faster waves that reached the capital affected smaller buildings, and spared most tall buildings.

Contributors

Created

Date Created
  • 2018-05

133978-Thumbnail Image.png

Arizona's Transportation Infrastructure: An Investigation into the Quality, Funding Sources, and Maintenance Processes of Roads and Bridges in the State of Arizona

Description

Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges

Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate. These grades may seem tolerable in light of a national bridge C+ grade and a national road D grade, but the real problem lies in Arizona's existing funding gap that is in danger of exponentially increasing in the future. With an influx of vehicles on Arizona's roads and bridges, the cost of building, repairing, and maintaining them will grow and cause a problematic funding shortage. This report explores the current state of Arizona's roads and bridges as well as the policy and funding sources behind them, using statistics from the ASCE infrastructure report card and the Federal Highway Administration. Additionally, it discusses how regular, preventative maintenance for transportation infrastructure is the economically responsible choice for the state because it decreases delays and fuel expenses, prevents possible catastrophes, and increases human safety. To prioritize preventative transportation infrastructure maintenance, the common mentality that allows it to be sidelined for more newsworthy projects needs to be changed. Along with gaining preventative maintenance revenues through increasing vehicular taxes and fees, encouraging transportation policymakers and politicians to make economic decisions in favor of maintenance rather than waiting until failure is a reliable way to encourage regular, preventative maintenance.

Contributors

Agent

Created

Date Created
  • 2018-05

131665-Thumbnail Image.png

Analyzing Potential Solutions for Traffic Congestion on the Intersection of Forest and 89A in Sedona, AZ using Traffic Modeling Softwares

Description

Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper

Gathering the necessary information required to tackle traffic congestion problems is generally time consuming and challenging but is an important part of city planners’ work. The purpose of this paper is to describe the methodology used when analyzing potential solutions for the Arizona State Route 89A and Highway 179 roundabout in Sedona, Arizona; which is currently experiencing significant congestion. The oversaturated condition is typically applied to signalized intersections but its application to roundabouts requires further exploration for future management of similar transportation systems. The accompanying Quick Estimation and Simulation model (QESM) spreadsheet was calibrated using an iterative process to optimize its level of adaptability to various scenarios. This microsimulation modeling program can be used to predict the outcome of possible roadway improvements aimed at decreasing traffic congestion. The information provided in this paper helps users understand traffic system problems, as a primary to visual simulation programs.

Contributors

Agent

Created

Date Created
  • 2020-05

Bella Vida Estates: Due Diligence, Street Improvements, and Quantities

Description

This honors project combines the capstone component of CEE: 486 Integrated Civil Engineering Design and the Barrett, The Honors College requirement by combination of Due Diligence report and Street Improvements

This honors project combines the capstone component of CEE: 486 Integrated Civil Engineering Design and the Barrett, The Honors College requirement by combination of Due Diligence report and Street Improvements and Quantities, respectively.

Overall, this project report provides due diligence for a proposed development project, Bella Vida Estates, designed by Red Rock Engineering. This proposed project is located in the southwest portion of the City of Phoenix, in the Laveen Village community.

Bella Vida Estates is a proposed 560-acre mixed-use development whose composition includes single family residential, commercial, recreational park and greenspace, a preparatory charter school, and water storage and wastewater treatment facilities. The subject property is confined east of the new Loop 202 – South Mountain Freeway Extension, south of W. Dobbins Road, north of W. Elliot Road, and west of S. 51st Avenue.

The Due Diligence report is comprised of relevant information needed to develop these parcels of land, including a Property Overview, Land Development Plan, Development Considerations, Sustainability and Value Add components, and Costs.

To provide a more comprehensive due diligence package for the proposed project, street improvement quantities were estimated and then presented via a Construction Documents Exhibit and an Opinion of Probable Costs document.

The Construction Documents Exhibit was created according to City of Phoenix Standards using AutoCAD Civil 3D. The exhibit includes four sheets: Cover Sheet, Exhibit Sheet, Cross Sections, and Appendix. The purpose of this exhibit is to provide a visual representation of the streets to be improved upon, with proper hatching (based on type of cross section), dimensioning, and annotations to aid in presentation.

The Opinion of Probable Costs tabulates Onsite Development costs, which includes Paving, utilities in the form of Water, Sewer, and Storm, Earthwork/Grading, and Lump Sum costs. In addition to the onsite costs, Contingency, General Conditions, General Contractor Fee, and Taxes are included to provide a comprehensive overview of estimated costs.

Red Rock Engineering is excited to propose this promising, sustainable development as a place of residence, commerce, and recreation to the residents of the Laveen Village community.

Contributors

Agent

Created

Date Created
  • 2020-05

131519-Thumbnail Image.png

Physical Aids for the Mechanics Project

Description

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that there were consistent points of confusion amongst the students that the teaching staff could not efficiently communicate with the electronic or physical classroom materials available. As a physical learner, I am able to learn more comprehensively if I have a physical model to manipulate, and often found myself in the position of wanting to be able to physically represent and manipulate the systems being studied in class.

Contributors

Agent

Created

Date Created
  • 2020-05

133728-Thumbnail Image.png

Comparing Loading Provisions Between ASCE 7-10 and ASCE 7-16

Description

The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe

The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind, and snow loads. The only major changes between the standards were found in the wind load calculations. The winds loads were reduced by approximately 22% for the office building in Tempe and 37% for the community center in Flagstaff. A structural design was completed for the frame of the Flagstaff community building. There was a 19% reduction in cost from the design using ASCE 7-10 provisions compared to the design utilizing ASCE 7-16 provisions, leading to a saving of $7,599.17. The reduction in loading, and subsequently more cost-effective design, is attributed to the reduction in basic wind speed for the region and consideration of the ground elevation factor. The introduction of the new ASCE 7-16 standard was met with criticism, especially over the increase in specific coefficients in the wind load and seismic load chapters. Proponents of ASCE 7-16 boast that the new chapter on tsunami loads, new maps for various environmental loads, and a new electronic hazard are some of the merits of the newest standard. Others still question whether the complexity of the provisions is necessary and call for further improvements for the wind and seismic provisions. While tension exists in the desire for a simple standard, ASCE 7-16 prioritizes in having its provisions provide economical and reliable results. More consideration could be devoted to developing a more convenient standard for users. Regardless, engineering professionals should be able to adapt alongside newly developed practices and newly discovered data.

Contributors

Created

Date Created
  • 2018-05

131351-Thumbnail Image.png

Crew Balance in Construction Tasks for Productivity Analysis - A Sustainability Perspective

Description

The following report followed three separate construction crews at a construction site at ASU and performed labor productivity analysis to quantitatively measure the efficiency of the workers performing specific tasks.

The following report followed three separate construction crews at a construction site at ASU and performed labor productivity analysis to quantitatively measure the efficiency of the workers performing specific tasks. These crews were tasked with electrical wiring, concrete pouring, and drywall sanding. Crew balance measured the down time of individual crew members compared to the overall time spent on a task, and the results of these observations were calculated, and suggested improvements given.

Contributors

Agent

Created

Date Created
  • 2020-05

135448-Thumbnail Image.png

Development of an Automated Pultrusion System for Manufacturing of Textile Reinforced Cementitious Composites

Description

Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to

Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to continuously improve the performance of the material. Fiber reinforcement is a significant technique in strengthening precast concrete, but manufacturing limitations are common which has led to reliance on steel reinforcement. Two-dimensional textile reinforcement has emerged as a strong and efficient alternative to both fiber and steel reinforced concrete with pultrusion manufacturing shown as one of the most effective methods of precasting concrete. The intention of this thesis project is to detail the components, functions, and outcomes shown in the development of an automated pultrusion system for manufacturing textile reinforced concrete (TRC). Using a preexisting, manual pultrusion system and current-day manufacturing techniques as a basis, the automated pultrusion system was designed as a series of five stations that centered on textile impregnation, system driving, and final pressing. The system was then constructed in the Arizona State University Structures Lab over the course of the spring and summer of 2015. After fabricating each station, a computer VI was coded in LabVIEW software to automatically drive the system. Upon completing construction of the system, plate and angled structural sections were then manufactured to verify the adequacy of the technique. Pultruded TRC plates were tested in tension and flexure while full-scale structural sections were tested in tension and compression. Ultimately, the automated pultrusion system was successful in establishing an efficient and consistent manufacturing process for continuous TRC sections.

Contributors

Created

Date Created
  • 2016-05